首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
  2021年   3篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
排序方式: 共有56条查询结果,搜索用时 31 毫秒
1.
Dopamine Sulfoconjugation in the Rat Brain: Regulation by Monoamine Oxidase   总被引:2,自引:2,他引:0  
An increase of free 3,4-dihydroxyphenylethylamine (DA, dopamine) in the rat brain such as is found following 3,4-dihydroxyphenylalanine (L-DOPA) administration or an intraventricular injection of free dopamine did not result in DA sulfate formation, despite the presence of phenolsulfotransferase activity in various regions of the brain and the high affinity of DA for this enzyme. However, when rats were pretreated with pargyline, a monoamine oxidase inhibitor, the same treatment with L-DOPA or free DA led to active synthesis of DA sulfate. The increase in DA sulfate was significantly correlated with the degree of monoamine oxidase inhibition and directly proportional to free DA concentrations in the hypothalamus (r = 0.86), striatum (r = 0.54), and brainstem (r = 0.89). The highest ratio of DA sulfate to free DA was found in the hypothalamus, suggesting that sulfoconjugation is most active in this region. Prior treatment of rats with 6-hydroxydopamine did not decrease DA sulfate concentrations, indicating that sulfoconjugation occurs most likely in extraneuronal tissues not destroyed by the neurotoxin. The results are compatible with the notion that phenolsulfotransferase may be highly compartmentalized and that inhibition of monoamine oxidase allows the newly generated free DA to become accessible to the sulfoconjugating enzyme, resulting in increase in DA sulfation.  相似文献   
2.
Intracerebroventricular administration of vasoactive intestinal peptide (VIP) shortened the duration of pentobarbital-induced sleep and produced significant hypermotility in the rat. Although hypermotility induced by methamphetamine was not potentiated by central administration of VIP, L-DOPA-induced hypermotility in pargyline-pretreated rats was markedly enhanced by VIP and this hypermotility was suppressed by simultaneous administration of cholecystokinin octapeptide (CCK-8) in a dose-related manner. Apomorphine-induced hypermotility was also potentiated by VIP. These results suggest that VIP may stimulate postsynaptic dopaminergic receptor, causing an increase in motility, and that a possible reciprocal interaction exists between VIP and CCK-8.  相似文献   
3.
Abstract: L-DOPA is a large neutral amino acid subject to transport out of, as well as into, brain tissue. Competition between dopamine synthesis and L-DOPA egress from striatum must favor L-DOPA egress if decarboxylation declines relatively more than transport in Parkinson's disease. To test this hypothesis, we injected patients with Parkinson's disease with a radidabeled analogue of L-DOPA and recorded regional brain radioactivity as a function of time by means of positron emission tomography. We simultaneously estimated the activity of the decarboxylating enzyme and the amino acid transport. In the striatum of patients, we found the L-DOPA decarboxylase activity to be reduced in the head of the caudate nucleus and the putamen. However, the rate of egress of the DOPA analogue was unaffected by the disease and thus inhibited dopamine synthesis more than predicted in the absence of L-DOPA egress.  相似文献   
4.
The role of astroglia on the survival of dopamine neurons   总被引:5,自引:0,他引:5  
Glial cells play a key role in the function of dopamine (DA) neurons and regulate their differentiation, morphology, physiological and pharmacological properties, survival, and resistance to different models of DA lesion. Several studies suggest that glial cells may be important in the pathogenesis of Parkinson’s disease (PD), a common neurodegenerative disorder characterized by degeneration of the nigrostriatal DA system. In this disease the role of glia could be due to the excessive production of toxic products such as nitric oxide (NO) or cytokines characteristic of inflammatory process, or related to a defective release of neuroprotective agents, such as small antioxidants with free radical scavenging properties or peptidic neurotrophic factors.  相似文献   
5.
Summary.  Despite its being the most efficacious drug for symptom reversal in Parkinson's disease (PD), there is concern that chronic levodopa (L-DOPA) treatment may be detrimental. In this paper we review the potential for L-DOPA to 1) autoxidize from a catechol to a quinone, and 2) generate other reactive oxygen species (ROS). Overt toxicity and neuroprotective effects of L-DOPA, both in vivo and in vitro, are described in the context of whether L-DOPA may accelerate or delay progression of human Parkinson's disease. Received June 29, 2001 Accepted August 6, 2001 Published online June 3, 2002  相似文献   
6.
Tetrahydropapaveroline (THP), a metabolite of dopamine, has been suspected to be associated with dopaminergic neurotoxicity of L-DOPA. THP induced apoptosis in human leukemia cell line HL-60 cells, but did not in its hydrogen peroxide (H2O2)-resistant clone HP100. THP-induced DNA ladder formation in HL-60 cells was inhibited by a metal chelator. THP induced damage to 32P-labeled DNA fragments in the presence of metals. In the presence of Fe(III)EDTA, THP caused DNA damage at every nucleotide. The DNA damage was inhibited by free hydroxy radical (·OH) scavengers and catalase, suggesting that the Fe(III)EDTA-mediated DNA damage is mainly due to ·OH generation. In the presence of Cu(II), THP caused DNA damage mainly at T and G of 5′-TG-3′ sequence. The inhibitive effect of catalase and bathocuproine on Cu(II)-mediated DNA damage suggested that H2O2 and Cu(I) participate in the DNA damage. This study demonstrated that THP-induced apoptosis via reactive oxygen species generated from reaction of H2O2 and metals plays an important role in cytotoxicity of L-DOPA.  相似文献   
7.
The health-relevant functionality of Mucuna pruriens was improved by priming the seeds with elicitors of the pentose phosphate pathway (PPP) such as fish protein hydrolysates (FPHs), lactoferrin (LF) and oregano extract (OE) followed by dark germination. FPH elicited the highest phenolic content of 19 mg/g FW on day 1, which was 38% higher than control sprouts. OE enhanced Parkinson’s disease-relevant L-DOPA content by 33% on day 1 compared to control sprouts. Anti-diabetes-relevant α-amylase inhibition percent (AIP) and α-glucosidase inhibition percent (GIP) were high in the cotyledons and decreased following elicitation and sprouting. For potential anti-diabetic applications, low AIP and high GIP with moderate L-DOPA content on day 4 of dark germination could be optimal. Improved L-DOPA concentrations in a soluble phenolic and antioxidant-rich M. pruriens background on day 1 sprouts have potential for Parkinson’s disease management.  相似文献   
8.
Summary In a histochemical study of intrinsic cardiac ganglia of the guinea-pig in whole-mount preparations, it was found that some 70–80% of the neurons express aspects of the catecholaminergic phenotype. These neurons have an uptake mechanism for L-DOPA, and contain the enzymes for converting L-DOPA, (but not D-DOPA) to dopamine and noradrenaline, i.e. aromatic L-aminoacid decarboxylase and dopamine -hydroxylase. Monoamine oxidase is also present within some of the neurons. In these respects, the neurons resemble noradrenergic neurons of sympathetic ganglia, so we refer to them as intrinsic cardiac amine-handling neurons. However, these neurons do not contain tyrosine hydroxylase and show little or no histochemically detectable uptake of -methyldopa, dopamine or noradrenaline, even after depletion of endogenous stores of amines by pre-treatment with reserpine. Noradrenergic fibres from the sympathetic chain form pericellular baskets around nerve cell bodies. The uptake of L-DOPA into nerve cell bodies is not prevented by treatment with 6-hydroxydopamine sufficient to cause transmitter-depletion or degeneration of the extrinsic noradrenergic fibres. Such degeneration experiments suggest that axons of the amine-handling neurons project to cardiac muscle, blood vessels and other intrinsic neurons. The cardiac neurons do not show any immunohistochemically detectable serotonergic characteristics; there is no evidence for uptake of the precursors L-tryptophan and 5-hydroxytryptophan or 5-HT itself, whereas the extrinsic noradrer ergic nerve fibres within the ganglia can take up 5-HT when it is applied in high concentrations.Abbreviations AChE acetylcholinesterase - DBH-IR dopamine -hydroxylase-like immunoreactivity - L-DOPA L-dihydroxyphenylalamine - 5-HT-IR 5-hydroxytryptamine-like immunoreactivity - 6-OHDA 6-hydroxydopamine - methyldopa L--methyl-dihydroxyphenylalanine - MAO monoamine oxidase - NPY neuropeptide Y - SIF small intensely fluorescent cells - TH-IR tyrosine hydroxylase-like immunoreactivity - VIP vasoactive intestinal polypeptide  相似文献   
9.
Brain grafts and Parkinson's disease   总被引:1,自引:0,他引:1  
In animal models, grafts derived from several different tissues, principally fetal substantia nigra and adrenal medulla from young adults, have been found to be effective in alleviating some of the manifestations of lesions of the substantia nigra. It has been suggested that these grafts function by diffusely secreting dopamine, by exerting trophic effects on the host brain, or by producing a new innervation of the host corpus striatum. Evidence for each of these modes of action is briefly reviewed. Several brain tissue transplantation techniques have been described. Each of these techniques has significant limitations in animal models. The significance of these limitations for human application is described, and possibilities for improving the efficacy of brain tissue transplantation in animal models and for human application are discussed.  相似文献   
10.
Abstract: In this experiment, we examined the modulatory effects of testosterone on the parkinsonism-inducing drug 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) in two strains of mice. Orchidectomized male CD-1 and C57/BI mice were implanted with either empty Silastic capsules or capsules containing testosterone and subsequently treated with MPTP. A small area of the corpus striatum was removed for determination of dopamine (DA) content, whereas the remainder was superfused and used to measure L-DOPA (5 μ M )-evoked DA release. In animals treated with MPTP, L-DOPA-evoked DA release was reduced significantly in CD-1 mice, but not in C57/BI mice, treated with testosterone. No differences in L-DOPA-stimulated DA release between MPTP- versus vehicle-treated mice was observed in either the CD-1 or C57/BI mice receiving empty Silastic capsules. Corpus striatum DA contents were more severely depleted in the MPTP-sensitive C57/BI versus the CD-1 mouse strain irrespective of hormone treatment. These results confirm previous results demonstrating differences in these two mouse strains in response to the neurotoxic effects of MPTP upon corpus striatum DA content. More interestingly, they show an important differential modulatory effect of testosterone upon L-DOPA-evoked DA release as a function of MPTP treatment and indicate that testosterone significantly alters the neurotoxic effects of MPTP in the CD-1 mouse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号