首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
排序方式: 共有5条查询结果,搜索用时 46 毫秒
1
1.
Corneal keratocytes have a remarkable ability to heal the cornea throughout life. Given their developmental origin from the cranial neural crest, we asked whether this regenerative ability was related to the stem cell-like properties of their neural crest precursors. To this end, we challenged corneal stromal keratocytes by injecting them into a new environment along cranial neural crest migratory pathways. The results show that injected stromal keratocytes change their phenotype, proliferate and migrate ventrally adjacent to host neural crest cells. They then contribute to the corneal endothelial and stromal layers, the musculature of the eye, mandibular process, blood vessels and cardiac cushion tissue of the host. However, they fail to form neurons in cranial ganglia or branchial arch cartilage, illustrating that they are at least partially restricted progenitors rather than stem cells. The data show that, even at late embryonic stages, corneal keratocytes are not terminally differentiated, but maintain plasticity and multipotentiality, contributing to non-neuronal cranial neural crest derivatives.  相似文献   
2.
This study was conducted to characterize ultrastructural damage to human corneas cryopreserved by a standard protocol. The materials used were seven human corneas that were unsuitable for transplantation due to the presence of positive bacteriological cultures; they were cryopreserved according the standard procedure. After freezing and thawing, samples were obtained for scanning and transmission electron microscopy studies. Marked damage was observed in keratocytes with signs of apoptotic cellular injury. However our observations have shown that apoptosis contribute less significantly than necrosis to cellular death in keratocytes of human corneas and although the control of apoptosis is clearly desirable, in order to improve the success of cryopreserved corneas for transplant, we need to continue our investigation to reduce the effects of the necrotic process. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
3.
Liu C  Arar H  Kao C  Kao WW 《Gene》2000,250(1-2):85-96
The mouse keratocan gene (Ktcn) expression tracks the corneal morphogenesis during eye development and becomes restricted to keratocytes of the adult, implicating a cornea-specific gene regulation of the mouse Ktcn [J. Biol. Chem., 273 (1998) 22 584–22 588]. To examine the functionality of the mouse Ktcn promoter, we have cloned and sequenced a 3.2 kb genomic DNA fragment 5′ of the mouse Ktcn gene, which was used to prepare a reporter gene construct that contained the 3.2 kb 5′ flanking sequence, exon 1 and 0.4 kb of intron 1 of Ktcn, and β-geo hybrid reporter gene. The β-galactosidase (βGal) activity was assayed in tissues of two of five transgenic mouse lines obtained via microinjection. In adult transgenic mice, βGal activity was detected only in cornea, not in other tissues (e.g. lens, retina, sclera, lung, heart, liver, diaphragm, kidney, and brain). During ocular development, the spatial–temporal expression patterns of the βGal recapitulated that of endogenous Ktcn in transgenic mice. Using XGal staining, strong βGal activity was first detected in periocular tissues of E13.5 embryos, and restricted to corneal keratocytes at E14.5 and thereafter. Interestingly, in addition to cornea, βGal activity was transiently found in some non-ocular tissues, i.e. ears, snout, and limbs of embryos of E13.5 and E14.5 but was no longer detected in those tissues of E16.5 embryos. The transient expression of endogenous keratocan in non-ocular tissues during embryonic development was confirmed by in situ hybridization. Taken together, our results suggest that the 3.2 kb Ktcn promoter contains sufficient cis-regulatory elements to drive heterologous minigene expression in cells expressing keratocan. The identification of keratocyte-specific expression of βGal reporter gene in the adult transgenic mice is an important first step in characterizing the Ktcn promoter in order to use it to drive a foreign gene expression in corneal stroma.  相似文献   
4.
TGFβ induces fibrosis in healing corneal wounds, and in vitro corneal keratocytes up-regulate expression of several fibrosis-related genes in response to TGFβ. Hyaluronan (HA) accumulates in healing corneas, and HA synthesis is induced by TGFβ by up-regulation of HA synthase 2. This study tested the hypothesis that HA acts as an extracellular messenger, enhancing specific fibrotic responses of keratocytes to TGFβ. HA synthesis inhibitor 4-methylumbelliferone (4MU) blocked TGFβ induction of HA synthesis in a concentration-dependent manner. 4MU also inhibited TGFβ-induced up-regulation of α-smooth muscle actin, collagen type III, and extra domain A-fibronectin. Chemical analogs of 4MU also inhibited fibrogenic responses in proportion to their inhibition of HA synthesis. 4MU, however, showed no effect on TGFβ induction of luciferase by the 3TP-Lux reporter plasmid. Inhibition of HA using siRNA to HA synthase 2 reduced TGFβ up-regulation of smooth muscle actin, fibronectin, and cell division. Similarly, brief treatment of keratocytes with hyaluronidase reduced TGFβ responses. These results suggest that newly synthesized cell-associated HA acts as an extracellular enhancer of wound healing and fibrosis in keratocytes by augmenting a limited subset of the cellular responses to TGFβ.  相似文献   
5.
Morphologies of moving amoebae are categorized into two types. One is the "neutrophil" type in which the long axis of cell roughly coincides with its moving direction. This type of cell extends a leading edge at the front and retracts a narrow tail at the rear, whose shape has been often drawn as a typical amoeba in textbooks. The other one is the "keratocyte" type with widespread lamellipodia along the front side arc. Short axis of cell in this type roughly coincides with its moving direction. In order to understand what kind of molecular feature causes conversion between two types of morphologies, and how two typical morphologies are maintained, a mathematical model of amoebic cells is developed. This model describes movement of cell and intracellular reactions of activator, inhibitor and actin filaments in a unified way. It is found that the producing rate of activator is a key factor of conversion between two types. This model also explains the observed data that the keratocyte type cells tend to rapidly move along a straight line. The neutrophil type cells move along a straight line when the moving velocity is small, but they show fluctuated motions deviating from a line when they move as fast as the keratocyte type cells. Efficient energy consumption in the neutrophil type cells is predicted.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号