首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   14篇
  国内免费   1篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   8篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   7篇
  2014年   12篇
  2013年   16篇
  2012年   14篇
  2011年   16篇
  2010年   18篇
  2009年   15篇
  2008年   20篇
  2007年   23篇
  2006年   16篇
  2005年   14篇
  2004年   19篇
  2003年   19篇
  2002年   21篇
  2001年   24篇
  2000年   8篇
  1999年   6篇
  1998年   7篇
  1997年   2篇
  1996年   12篇
  1995年   6篇
  1994年   11篇
  1993年   9篇
  1992年   8篇
  1991年   5篇
  1990年   1篇
  1989年   7篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有376条查询结果,搜索用时 15 毫秒
1.
The effect of kainate on extracellular levels of amino acids in corpus striatum was investigated in vitro and in vivo, to elucidate the mechanism underlying its neurotoxicity. Kainate increased extracellular glutamate and aspartate in both striatal slices in vitro and intact striatum in vivo, as previously reported. Both in vitro and in vivo, DL-threo-3-hydroxyaspartate increased extracellular glutamate and aspartate levels (to between 150 and 200% of basal), and also enhanced their kainate-evoked release. The action of kainate in vivo was reduced by prior frontal decortication, whereas in vitro the kainate-evoked responses were only slightly reduced by tetrodotoxin, and remained above control values. These results confirm that kainate increases extracellular glutamate and aspartate, and provide evidence that this is due to synaptic release evoked by an action on receptors on glutamatergic neurone terminals. These findings may be relevant to the understanding of epilepsy.  相似文献   
2.
Increasing the [K+] in the assay medium from 5.7 to 17.8 mM produces a large enhancement of the inositol phospholipid breakdown response to the muscarinic agonist carbachol in rat cerebral cortical miniprisms, with minor effects on basal inositol phospholipid breakdown. This effect is also found with Rb+. The enhancement by a raised [K+] is not accompanied by a change in the composition of the labelled polyphosphoinositides. The carbachol-stimulated inositol phospholipid breakdown at 17.8 and 42.7 mM K+ was antagonised by veratrine (5-80 microM), 4-aminopyridine (5 mM), and tetraethylammonium (20 mM). These compounds, however, also inhibited the binding of [3H]quinuclidinyl benzilate to cortical membranes. BRL 34915 (0.2-20 microM) was without significant effect on carbachol-stimulated inositol phospholipid breakdown at either 5.7 or 17.8 mM K+.Mg2+ (10 mM) considerably reduced the carbachol-stimulated inositol phospholipid breakdown at 17.8, but not 42.7, mM K+. Inositol phospholipid breakdown was also stimulated, albeit to a small extent, by L-glutamate (100-3,000 microM) and quisqualate (1-100 microM), with the stimulation being additive to that produced by carbachol at both 5.7 and 17.8 mM K+. N-Methyl-D-aspartate (10-1,000 microM in Mg2+-free medium) had no significant effect on basal inositol phospholipid breakdown and had little or no effect on carbachol-stimulated inositol phospholipid breakdown at either 5.7 or 17.8 mM K+. It is concluded that it may not be correct to ascribe wholly the enhancement by K+ of carbachol-stimulated inositol phospholipid breakdown to the tissue-depolarising actions of this ion and that other actions of K+ may be involved.  相似文献   
3.
Chronic exposure of dissociated cerebellar cultures to 50M kainate results in a complete loss of [3H]-GABA release which is a marker of GABAergic interneurons. No loss of granule cells was found and the glutamatergic nature of the granule cells appeared unaltered by the kainate treatment, since evoked release of [3H]-d-aspartate was maintained after kainate exposure. Glial cells in such cultures are virtually eliminated by treatment with an antimitotic such as cytarabin. In consequence a pure culture of cerebellar granule cells virtually free of stellate, basket and glial cells may be obtained by a combined chronic treatment of the cultures with kainate and cytarabin.  相似文献   
4.
Abstract: Inclusion of sodium nitroprusside {Na2[Fe2+-(CN)5NO]} into the culture medium is toxic to cultured rat cerebellar granule neurons. A possible underlying mechanism may be the inhibition of phosphoinositide (PI) response to excitatory amino acids (EAAs) because activation of glutamate receptors can be neuroprotective and neurotrophic in differentiating neurons. Sodium nitroprusside selectively inhibited the PI response to EAAs (NMDA > glutamate = quisqualate > kainate) without affecting that to carbachol or KCI. In contrast, S-nitroso-N-acetylpenicillamine (SNAP), another nitric oxide (NO) donor, potentiated NMDA-induced PI hydrolysis. Hemoglobin reversed the effects of nitroprusside and SNAP. However, NO may not be involved because NO solution was without effect and N-acetylpenicillamine, a SNAP analogue that does not contain a NO moiety, also potentiated NMDA-induced PI hydrolysis in a hemoglobin-sensitive manner. Furthermore, the metabolites of NO (nitrate and nitrite), l -arginine, reduced glutathione, 8-bromo-cyclic guanosine 3′:5′-cyclic monophosphate (8-Br-cGMP), and atrial natriuretic peptide, which accelerates the production of cGMP independent of NO, were ineffective as modulators. However, potassium ferrocyanide {K4[Fe2+(CN)6]}, but not potassium ferricyanide {K3[Fe3+(CN)6]}, inhibited NMDA-induced PI hydrolysis as effectively as nitroprusside, but this inhibition was not reversed by hemoglobin. Cyanide, a product from the disintegration of nitroprusside, potentiated rather than inhibited NMDA-induced PI hydrolysis. Taken together, these results suggest that the parent molecule itself, nitroprusside, contributes primarily in inhibiting EAA-induced PI hydrolysis. Inhibition of EAA-induced PI hydrolysis may in part mediate the mechanisms of nitroprusside toxicity in primary cultures of differentiating cerebellar granule neurons.  相似文献   
5.
Abstract: Disruption of corticostriatal glutamate input in the striatum decreased significantly extracellular striatal glutamate and dopamine levels. Local administration of 300 µ M concentration of excitatory receptor agonist kainic acid increased significantly extracellular striatal dopamine in intact freely moving rats. These findings support the hypothesis that glutamate exerts a tonic facilitatory effect on striatal dopamine release. The effect of kainic acid on extracellular striatal glutamate concentration in intact rats was a biphasic increase. The first glutamate increase can be explained by stimulation of presynaptic kainate receptors present on corticostriatal glutamatergic nerve terminals; the second increase is probably the result of a continuous interaction of the different striatal neurotransmitters after disturbance of their balance. Release of dopamine and glutamate was modulated differently in the intact striatum and in the striatum deprived of corticostriatal input. Dopamine release in the denervated striatum after kainate receptor stimulation was significantly lower than in intact striatum, confirming the so-called cooperativity between glutamate and kainic acid. Loss of presynaptic kainate receptors on the glutamatergic nerve terminals after decortication resulted in a loss of effect of kainic acid on glutamate release in denervated striatum. Aspartate showed no significant changes in this study.  相似文献   
6.
NMDA, the specific agonist of glutamate gated ion channels permeable to calcium, is implicated as a causal factor in the pathogenesis of several neurobiological disorders such as stroke, seizures, ischemia, and chronic neurodegenerative disease. On the other hand, evidence on the roles of oxidative mechanisms involved in NMDA-induced neurotoxicity is accumulating. In this study, we have used chemiluminescence measurements as an easy, rapid and sensitive assay to investigate the effects of NMDA and oxidative stress on brain cell vulnerability. Rat brain homogenates were incubated with increasing concentrations of glutamate and NMDA. Production of reactive oxygen species was followed by single photon emission measurements using the specific enhancers luminol and lucigenin. Increases in emission were observed at excitotoxic concentrations of glutamate and NMDA. Other parameters of oxidative stress such as diene conjugates, TBARS and carbonyl groups were also investigated. Our results indicated that chemiluminescence measurements may be used to study involvement of oxidative stress in neurotoxicity.  相似文献   
7.
Adenylate cyclase activity measured by the formation of cyclic AMP in rat brain membranes was inhibited by a shellfish toxin, domoic acid (DOM). The inhibition of enzyme was dependent on DOM concentration, but about 50% of enzyme activity was resistant to DOM-induced inhibition. Rat brain supernatant resulting from 105,000×g centrifugation for 60 min, stimulated adenylate cyclase activity in membranes. Domoic acid abolished the supernatant-stimulated adenylate cyclase activity. The brain supernatant contains factors which modulate adenylate cyclase activity in membranes. The stimulatory factors include calcium, calmodulin, and GTP. In view of these findings, we examined the role of calcium and calmodulin in DOM-induced inhibition of adenylate cyclase in brain membranes. Calcium stimulated adenylate cyclase activity in membranes, and further addition of calmodulin potentiated calcium-stimulated enzyme activity in a concentration dependent manner. Calmodulin also stimulated adenylate cyclase activity, but further addition of calcium did not potentiate calmodulin-stimulated enzyme activity. These results show that the rat brain membranes contain endogenous calcium and calmodulin which stimulate adenylate cyclase activity. However, calmodulin appears to be present in membranes in sub-optimal concentration for adenylate cyclase activation, whereas calcium is present at saturating concentration. Adenylate cyclase activity diminished as DOM concentration was increased, reaching a nadir at about 1 mM. Addition of calcium restored DOM-inhibited adenylate cyclase activity to the control level. Similarly, EGTA also inhibited adenylate cyclase activity in brain membranes in a concentration dependent manner, and addition of calcium restored EGTA-inhibited enzyme activity to above control level. The fact that EGTA is a specific chelator of calcium, and that DOM mimicked adenylate cyclase inhibition by EGTA, indicate that calcium mediates DOM-induced inhibition of adenylate cyclase activity in brain membranes. While DOM completely abolished the supernatant-, and Gpp (NH)p-stimulated adenylate cyclase activity, it partly blocked calmodulin-, and forskolin-stimulated adenylate cyclase activity in brain membranes. These results indicate that DOM may interact with guanine nucleotide-binding (G) protein and/or the catalytic subunit of adenylate cyclase to produce inhibition of enzyme in rat brain membranes.  相似文献   
8.
In our previous experiments, evidence of free radical formation has been demonstrated in gerbil brain after kainic acid (KA) administration. In the present study, the mechanisms involved in KA-induced free radical formation and subsequent cell degeneration were investigated using high density cortical neuron cultures. A free radical trapping agent,a-phenyl-N-tert-butyl-nitrone (PBN), as well as the combined action of superoxide dismutase and catalase attenuated KA neurotoxic effect. Calpain-induced xanthine oxidase (XO) activation may play an important role in KA excitotoxicity since calpain inhibitor I as well as allopurinol, a selective XO inhibitor, significantly protected the cortical neurons from KA-induced cell death. However, XO activation may not be the only source producing free radicals, other free radical generating systems such as nitric oxide synphase may also play a role in KA insult.  相似文献   
9.
10.
Neuronal apoptosis versus necrosis induced by glutamate or free radicals   总被引:3,自引:0,他引:3  
The type of cell death encountered in neuronal cell cultures exposed to excitatory amino acids — such as glutamate, the major excitatory neurotransmitter in the central nervous system, or free radicals, such as nitric oxide (NO.) and superoxide anoin (O2. ), which react to form peroxynitrite (ONOO) — appears to depend on the intensity of the exposure and may involve two temporarily distinct phases. Following relatively fulminant insults, an initial phase of necrosis — associated with extreme energy depletion — may simply reflect the failure of neurons to carry out the default apoptotic death program used to efficiently dispose of aged or otherwise unwanted cells. Neurons recovering mitochondrial energy potential after an initial fulminant insult or following a more subtle inciting injury may subsequently undergo apoptosis, possibly associated with a factor released from mitochondria that triggers this death program. The maintenance of balanced energy production may be a decisive factor in detemining the degree, type, and progression of neuronal injury caused by excitotoxins and free radicals. Similar events could possibly occur in vivo after ischemia or other insults.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号