首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   5篇
  国内免费   1篇
  105篇
  2024年   1篇
  2023年   7篇
  2022年   11篇
  2021年   17篇
  2020年   7篇
  2019年   12篇
  2018年   13篇
  2017年   1篇
  2016年   3篇
  2015年   7篇
  2014年   7篇
  2013年   11篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
1.
《Developmental cell》2022,57(2):212-227.e8
  1. Download : Download high-res image (115KB)
  2. Download : Download full-size image
  相似文献   
2.
Caveolin-1 (Cav-1) is a protein marker for caveolae organelles, and acts as a scaffolding protein to negatively regulate the activity of signaling molecules by binding to and releasing them in a timely fashion. We have previously shown that loss of Cav-1 promotes the proliferation of mouse embryo fibroblasts (MEFs) in vitro. Here, to investigate the in vivo relevance of these findings, we evaluated the turnover rates of small intestine crypt stem cells from WT and Cav-1 deficient mice. Interestingly, we show that Cav-1 null crypt stem cells display higher proliferation rates, as judged by BrdU and PCNA staining. In addition, we show that Wnt/?-catenin signaling, which normally controls intestinal stem cell self-renewal, is up-regulated in Cav-1 deficient crypt stem cells. Because the small intestine constitutes one of the main targets of radiation, we next evaluated the role of Cav-1 in radiation-induced damage. Interestingly, after exposure to 15 Gy of ?-radiation, Cav-1 deficient mice displayed a decreased survival rate, as compared to WT mice. Our results show that after radiation treatment, Cav-1 null crypt stem cells of the small intestine exhibit far more apoptosis and accelerated proliferation, leading to a faster depletion of crypts and villi. As a consequence, six days after radiation treatment, Cav-1 -/- mice lost all their crypt and villus structures, while WT mice still showed some crypts and intact villi. In summary, we show that ablation of Cav-1 gene expression induces an abnormal amplification of crypt stem cells, resulting in increased susceptibility to ?-radiation. Thus, our studies provide the first evidence that Cav-1 normally regulates the proliferation of intestinal stem cells in vivo.  相似文献   
3.
“RASopathies” are a group of developmental syndromes with partly overlapping clinical symptoms that are caused by germline mutations of genes within the Ras/MAPK signaling pathway. Mutations affecting this pathway can also occur in a mosaic state, resulting in congenital syndromes often distinct from those generated by the corresponding germline mutations. For syndromes caused by mosaic mutations of the Ras/MAPK signaling pathway, the term “mosaic RASopathies” has been proposed. In the following article, genetic and phenotypic aspects of mosaic RASopathies will be discussed.  相似文献   
4.
Beat Nyfeler 《Autophagy》2016,12(7):1206-1207
Inhibition of autophagy has been widely explored as a potential therapeutic intervention for cancer. Different factors such as tumor origin, tumor stage and genetic background can define a tumor's response to autophagy modulation. Notably, tumors with oncogenic mutations in KRAS were reported to depend on macroautophagy in order to cope with oncogene-induced metabolic stress. Our recent report details the unexpected finding that autophagy is dispensable for KRAS-driven tumor growth in vitro and in vivo. Additionally, we clarify that the antitumorigenic effects of chloroquine, a frequently used nonspecific inhibitor of autophagy, are not connected to the inhibition of macroautophagy. Our data suggest that caution should be exercised when using chloroquine and its analogs to decipher the roles of autophagy in cancer.  相似文献   
5.
6.
As an indicator for the malignancy of thyroid nodules (TN), the doubling time of TN was studied in this study to evaluate the effect of rs712 polymorphism on the progression of TN. In addition, we aimed to study the potential molecular mechanisms underlying the pathological effect of rs712 polymorphism upon TN. A Taqman method was used to genotype the patients according to their rs712 polymorphism. Real-time polymerase chain reaction, western blot, Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay was conducted to study the correlation between KRAS expression and the pathological effect of rs712 polymorphism. In-silicon analysis and luciferase assay were utilized to establish the regulatory relationship between let-7g and KRAS. KRAS messenger RNA (mRNA)/protein levels in the GG group were upregulated with a decreased apoptosis index. KRAS mRNA was validated to be a virtual target of let-7g. In addition, the mRNA/protein level of KRAS as well as cell proliferation index was decreased in primary thyroid cancer cells genotyped as TT/TG and transfected with KRAS small interfering RNA (siRNA)/let-7g precursors. The cell apoptosis index was evidently elevated in the KRAS siRNA/let-7g precursors group compared with that in the scramble controls. Moreover, KRAS mRNA/protein only showed slight reduction when GG-genotyped primary thyroid cancer cells were transfected by let-7g precursors. Additionally, let-7g precursors exhibited no significant effect on cell proliferation index or cell apoptosis in GG cells. Rs712 polymorphism T>G in the 3′-untranslated region of KRAS interrupts the interactions between let-7g and KRAS mRNA, leading to a higher cell proliferation index and reduced doubling time of TN.  相似文献   
7.
Alterations in cellular energy metabolism play critical roles in colorectal cancer (CRC). These alterations, which correlate to KRAS mutations, have been identified as energy metabolism signatures. This review summarizes the relationship between colorectal tumors associated with mutated KRAS and energy metabolism, especially for the deregulated energy metabolism that affects tumor cell proliferation, invasion, and migration. Furthermore, this review will concentrate on the role of metabolic genes, factors and signaling pathways, which are coupled with the primary energy source connected with the KRAS mutation that induces metabolic alterations. Strategies for targeting energy metabolism in mutated KRAS CRC are also introduced. In conclusion, deregulated energy metabolism has a close relationship with KRAS mutations in colorectal tumors. Therefore, selective inhibitors, agents against metabolic targets or KRAS signaling, may be clinically useful for colorectal tumor treatment through a patient-personalized approach.  相似文献   
8.
BackgroundThe KRAS exon 2 p. G12C mutation in patients with lung adenocarcinoma has been increasing in relevance due to the development and effectiveness of new treatment medications. Studies around different populations indicate that regional variability between ethnic groups and ancestries could play an essential role in developing this molecular alteration within lung cancer.MethodsIn a prospective and retrospective cohort study on samples from lung adenocarcinoma from 1000 patients from different administrative regions in Colombia were tested for the KRAS p.G12C mutation. An analysis of STR populations markers was conducted to identify substructure contributions to mutation prevalence.ResultsIncluded were 979 patients with a national mean frequency for the KRAS exon 2 p.G12C mutation of 7.97% (95%CI 6.27–9.66%). Variation between regions was also identified with Antioquia reaching a positivity value of 12.7% (95%CI 9.1–16.3%) in contrast to other regions such as Bogota DC (Capital region) with 5.4% (2.7–8.2%) and Bolivar with 2.4% (95%CI 0–7.2%) (p-value = 0.00262). Furthermore, Short tandem repeat population substructures were found for eight markers that strongly yielded association with KRAS exon 2 p.G12C frequency reaching an adjusted R2 of 0.945 and a p-value of < 0.0001.ConclusionsWidespread identification of KRAS exon 2 p.G12C mutations, especially in cases where NGS is not easily achieved is feasible at a population based level that can characterize regional and national patterns of mutation status. Furthermore, this type of mutation prevalence follows a population substructure pattern that can be easily determined by population and ancestral markers such as STR.  相似文献   
9.
10.
Melanoma is a disease associated with a very high mutation burden and thus the possibility of a diverse range of oncogenic mechanisms that allow it to evade therapeutic interventions and the immune system. Here, we describe the characterization of a panel of 102 cell lines from metastatic melanomas (the NZM lines), including using whole‐exome and RNA sequencing to analyse genetic variants and gene expression changes in a subset of this panel. Lines possessing all major melanoma genotypes were identified, and hierarchical clustering of gene expression profiles revealed four broad subgroups of cell lines. Immunogenotyping identified a range of HLA haplotypes as well as expression of neoantigens and cancer–testis antigens in the lines. Together, these characteristics make the NZM panel a valuable resource for cell‐based, immunological and xenograft studies to better understand the diversity of melanoma biology and the responses of melanoma to therapeutic interventions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号