首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2002年   1篇
  1996年   1篇
  1988年   1篇
  1985年   2篇
  1982年   1篇
  1981年   3篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Hyperpolarization-activated K channels (K H channels) in the plasmalemma of guard cells operate at apoplastic pH range of 5 to over 7. Using patch clamp in a whole-cell mode, we characterized the effect of varying the external pH between 4.4–8.1 on the activity of the K H channels in isolated guard cell protoplasts from Vicia faba leaves. Acidification from pH 5.5 to 4.4 increased the macroscopic conductance of the K H channels by 30–150% while alkalinization from pH 5.5 to 8.1 decreased it only by roughly 15%. The voltage-independent maximum cell conductance, increased by ∼60% between pH 8.1 and 4.4 with an apparent pK a of 5.3, most likely owing to the increased availability of channels. Voltage-dependent gating was affected only between pH 5.5 and 4.4. Acidification in this range shifted the voltage-dependent open probability by over 10 mV. We interpret this shift as an increase of the electrical field sensed by the gating subunits caused by the protonation of external negative surface charges. Within the framework of a surface charge model the mean spacing of these charges was ∼30 ? and their apparent dissociation constant was 10−4.6. The overall voltage sensitivity of gating was not altered by pH changes. In a subgroup of protoplasts analyzed within the framework of a Closed-Closed-Open model, the effect of protons on gating was limited to shifting of the voltage-dependence of all four transition rate constants. Received: 26 April 1996/Revised: 29 June 1996  相似文献   
2.
Summary Sarcoplasmic reticulum (SR) vesicles from frog leg muscle were fused with a planar phospholipid bilayer by a method described previously for rabbit SR. As a result of the fusion, K+-selective conduction channels are inserted into the bilayer. Unlike the two-state rabbit channel, the frog channel displays three states: a nonconducting (closed) state and two conducting states and . In 0.1m K+ the single-channel conductances are 50 and 150 pS for and , respectively. The probabilities of appearearance of the three states are voltage-dependent, and transitions between the closed and states proceed through the state. Both open states follow a quantitatively identical selectivity sequence in channel conductance: K+>NH 4 + >Rb+>Na+>Li+>Cs+. Both open states are blocked by Cs+ asymmetrically in a voltage-dependent manner. The zero-voltage dissociation constant for blocking is the same for both open states, but the voltage-dependences of the Cs+ block for the two states differ in a way suggesting that the Cs+ blocking site is located more deeply inside the membrane in the than in the state.  相似文献   
3.
Summary A periodic membrane potential change was found to occur in squid giant axons which were internally and externally perfused with solutions of an identical composition and were hyperpolarized by passing a sustained inward current. The solution contained Co2+ or Mn2+ as the sole cation species at a concentration of 1–10mm. The amplitude of the response was roughly 100 mV. The current intensity and the ion concentration had large effects on the response. The voltage-clamp technique revealed an N-shapedI-V characteristic of the membrane system. The membrane emf of the resting and excited states was almost the same but the membrane conductance was increased in the excited states. The response was suppressed with 4-aminopyridine reversibly but unchanged with tetrodotoxin or D-600. Those unusual ionic conditions did not deprive axons of their ability to produce ordinary action potentials in physiological solutions. The experimental conditions employed and the results obtained were very close to those for some of the artificial membrane models. Applicability of the physico-chemical theories developed for these models is discussed.  相似文献   
4.
Summary Under intracellular perfusion with a solution containing K+ as the sole cation species, squid giant axons were found to be capable of developing all-or-none action potentials when immersed in a medium in which CaCl2 was the only electrolyte. The adequate range of ion concentration for demonstrating this capability was mentioned. The reversal potential level measured by the voltage-clamp technique varied directly with the logarithm of the concentration of extracellular Ca-ion; the proportionality constant was close toRT/2F. The action potential observed under this Ca–K bi-ionic condition could not be suppressed by addition of tetrodotoxin or saxitoxin to the external medium. The external Ca-ion could be replaced with Co- or Mn-ion without eliminating the capability of the axons to develop action potentials. D-600 could not suppress the inward current observed under the voltage-clamp condition, but 4-aminopyridine could suppress it. The experimental findings were interpreted based on the current channel hypothesis and on the macromolecular theory.  相似文献   
5.
Summary Permeability ratios for pairs of monovalent cations permeating the two potassium systems proposed for the giant axon of the crabCarcinus maenas (M. E. Quinta-Ferreira, E. Rojas & N. Arispe,J. Membrane Biol. 66:171–181, 1982b) were estimated from measurements of the reversal potential of the currents under voltage-clamp conditions. With K+ inside the axon, permeability ratios from the reversal potential of the currents through the late channel are:P Rb/P K=0.9, /P K<0.2 andP Cs/P K=0.18. With Cs+ inside the ratios are:P K/P Cs=8.7,P Rb/P Cs=7.1 and /P Cs=2.4. The analysis of the inward currents carried by Rb+ or NH 4 + showed similar reversal potentials for the early transient component and the late sustained component. Whence, the sequence of permeabilities for the two types of potassium channels is:P K>P Rb> >P Na=P Cs. The time constants for the activation of the two components recorded either in K-, Rb-, or NH4-artificial seawater are twice as large as the corresponding time constants measured in Na-artificial seawater.  相似文献   
6.
7.
Summary A voltage-dependent and Ca2+-activated cation channel found in the vacuolar membrane of the yeast,Saccharomyces cerevisiae, was incorporated into planar lipid bilayer and its gating characteristics were studied at the macroscopic and single-channel levels. The open-channel probability at steady state, which was estimated by the macroscopic current measurement, gave a maximum value at –10 mV and decreased in a graded fashion as the voltage became more positive or more negative. The steady-state voltage dependence was explained by assuming two independent gates, which had different rate constants and opposite voltage dependence. The fast-responding gate opened when the voltage of thecis side (the side to which the vesicles were added) was made more negative and the slow-responding gate behaved in the opposite direction. Relatively high concentrations of Ca2+, about 1mm, were required on thecis side for opening the slow gate in a voltage-dependent manner. DIDS increased the open-channel probability of the fast gate when added to thecis side, but was ineffective on the slow gate.  相似文献   
8.
Summary Squid giant axon could be excited in concentrated glycerol solutions containing normal concentrations of electrolytes, when osmolalities of solutions inside and outside the axon were matched. These glycerol solutions did not freeze at the temperature as low as –19°C. The nerve excitation in these solutions were observed at this low temperature. The excitation process at this low temperature was slowed down and time constants of the excitation kinetics were several hundredfold larger than those in normal seawater at 10°C, under which temperature the squid habituated. The temperature coefficients for the electrophysiological membrane parameters under this condition were larger than those in normal seawater above 0°C. The Q10 value for the conduction velocity was 2.0 and that of the duration of the action potential was around 8.5. The time course of the membrane currents was also slowed with the Q10 value of around 5 and the magnitude decreased with the Q10 value of around 2 as the temperature was lowered. The Q10 values for the kinetics of the on process of the Na-channel were around 4.5 and were almost the same as those of the off process of the Na-channel in the wide range of the temperature below 0°C. The Q10 value of the on process of K-channel was around 6.5 and was larger than those for Na-channel. The Q10 values increased gradually as the temperature was lowered.  相似文献   
9.
Gating of sodium and potassium channels   总被引:1,自引:0,他引:1  
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号