首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   3篇
  2022年   1篇
  2020年   5篇
  2016年   3篇
  2014年   3篇
  2013年   7篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1981年   1篇
排序方式: 共有48条查询结果,搜索用时 46 毫秒
1.
In the present study, a series of new isoniazid embedded triazole derivatives have been synthesized. These compounds were evaluated for their in vitro antitubercular and antimicrobial activities. Among the screened compounds, six have exhibited potent antitubercular activity against Mycobacterium tuberculosis H37Rv strain with MIC value 0.78 μg/mL, whereas, three compounds have displayed activity with MIC value ranging from 1.56 to 3.125 μg/mL. The cytotoxicity of the active compounds was studied against RAW 264.7 cell line by MTT assay and no toxicity was observed even at 25 μg/mL concentration. The five compounds have displayed good antimicrobial activities. Molecular docking have been performed against mycobacterial InhA enzyme to gain an insight into the plausible mechanism of action which could pave the way for our endeavor to identify potent antitubercular candidates. We believe that further optimization of these molecules may lead to potent antitubercular agents.  相似文献   
2.
Isoniazid (INH) is an antituberculosis drug that has been associated with idiosyncratic liver injury in susceptible patients. The underlying mechanisms are still unclear, but there is growing evidence that INH and/or its major metabolite, hydrazine, may interfere with mitochondrial function. However, hepatic mitochondria have a large reserve capacity, and minor disruption of energy homeostasis does not necessarily induce cell death. We explored whether pharmacologic or genetic impairment of mitochondrial complex I may amplify mitochondrial dysfunction and precipitate INH-induced hepatocellular injury. We found that INH (≤3000 μM) did not induce cell injury in cultured mouse hepatocytes, although it decreased hepatocellular respiration and ATP levels in a concentration-dependent fashion. However, coexposure of hepatocytes to INH and nontoxic concentrations of the complex I inhibitors rotenone (3 μM) or piericidin A (30 nM) resulted in massive ATP depletion and cell death. Although both rotenone and piericidin A increased MitoSox-reactive fluorescence, Mito-TEMPO or N-acetylcysteine did not attenuate the extent of cytotoxicity. However, preincubation of cells with the acylamidase inhibitor bis-p-nitrophenol phosphate provided protection from hepatocyte injury induced by rotenone/INH (but not rotenone/hydrazine), suggesting that hydrazine was the cell-damaging species. Indeed, we found that hydrazine directly inhibited the activity of solubilized complex II. Hepatocytes isolated from mutant Ndufs4+/− mice, although featuring moderately lower protein expression levels of this complex I subunit in liver mitochondria, exhibited unchanged hepatic complex I activity and were therefore not sensitized to INH. These data indicate that underlying inhibition of complex I, which alone is not acutely toxic, can trigger INH-induced hepatocellular injury.  相似文献   
3.
Developing a strain with high docosahexaenoic acid (DHA) yield and stable fermenting-performance is an imperative way to improve DHA production using Aurantiochytrium sp., a microorganism with two fatty acid synthesis pathways: polyketide synthase (PKS) pathway and Type I fatty acid synthase (FAS) pathway. This study investigated the growth and metabolism response of Aurantiochytrium sp. CGMCC 6208 to two inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan), and proposed a method of screening high DHA yield Aurantiochytrium sp. strains with heavy ion mutagenesis and pre-selection by synergistic usage of cold stress (4 °C) and FAS inhibitors (triclosan and isoniazid). Results showed that (1) isoniazid and triclosan have positive effects on improving DHA level of cells; (2) mutants from irradiation dosage of 120 Gy yielded more DHA compared with cells from 40 Gy, 80 Gy treatment and wild type; (3) DHA contents of mutants pre-selected by inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan)at 4 °C, were significantly higher than that of wild type; (4) compared to the wild type, the DHA productivity and yield of a mutant (T-99) obtained from Aurantiochytrium sp. CGMCC 6208 by the proposed method increased by 50% from 0.18 to 0.27 g/Lh and 30% from 21 to 27 g/L, respectively. In conclusion, this study developed a feasible method to screen Aurantiochytrium sp. with high DHA yield by a combination of heavy-ion mutagenesis and mutant-preselection by FAS inhibitors and cold stress.  相似文献   
4.
In comparison with the hepatocytes obtained from intact rats and rats pretreated with phenobarbital or 3-methylchoranthrene, the amount of isonicotinic acid (INA) formed from isoniazid (INH) increased substantially after incubation at 37°C using the pretreated hepatocytes. This suggests an oxidative pathway for INA formation from INH, apart from hydrolysis. In order to explore the exact mechanism of INA formation in the hepatocytes, an HPLC assay for INA in the presence of INH and acetylisoniazid was developed. In this assay, INA was extracted after the preparation of an ion pair with tetra-n-butylammonium hydroxide, and analysed using an ODS column and a mobile phase consisting of 0.067 M potassium dihydrogenphosphate solution-methanol (96:4 v/v). The method is simple, accurate and especially suitable for INA determination after incubation of INH in isolated rat hepatocytes.  相似文献   
5.
Isoniazid and thioacetazone are the two important antitubercular drugs. In case of thioacetazone it is established that it inhibits mycolic acid cyclopropane synthase but the exact binding site accounting for such inhibition is presently unknown. In case of isoniazid its action on the said enzyme is unexplored. In this work we have analyzed the binding of isoniazid and thioacetazone with mycolic acid cyclopropane synthase (CmaA1 and CmaA2) using tools of computational biology. We have observed that thioacetazone fits well at the active site of CmaA1 and CmaA2 while isoniazid binds at the active site of CmaA1 only. We have recommended experimental validation of such results. If such results are proved to be fact it will explore the exact binding site of thioacetazone and discover a new mechanism of anti-tubercular action of isoniazid.  相似文献   
6.
Catalase-peroxidases or KatGs from seven different organisms, including Archaeoglobus fulgidus,Bacillus stearothermophilus, Burkholderia pseudomallei, Escherichia coli, Mycobacterium tuberculosis, Rhodobacter capsulatus and Synechocystis PCC 6803, have been characterized to provide a comparative picture of their respective properties. Collectively, the enzymes exhibit similar turnover rates with the catalase and peroxidase reactions varying between 4900 and 15,900 s−1 and 8-25 s−1, respectively. The seven enzymes also exhibited similar pH optima for the peroxidase (4.25-5.0) and catalase reactions (5.75), and high sensitivity to azide and cyanide with IC50 values of 0.2-20 μM and 50-170 μM, respectively. The KMs of the enzymes for H2O2 in the catalase reaction were relatively invariant between 3 and 5 mM at pH 7.0, but increased to values ranging from 20 to 225 mM at pH 5, consistent with protonation of the distal histidine (pKa approximately 6.2) interfering with H2O2 binding to Cpd I. The catalatic kcat was 2- to 3-fold higher at pH 5 compared to pH 7, consistent with the uptake of a proton being involved in the reduction of Cpd I. The turnover rates for the INH lyase and isonicotinoyl-NAD synthase reactions, responsible for the activation of isoniazid as an anti-tubercular drug, were also similar across the seven enzymes, but considerably slower, at 0.5 and 0.002 s−1, respectively. Only the NADH oxidase reaction varied more widely between 10−4 and 10−2 s−1 with the fastest rate being exhibited by the enzyme from B. pseudomallei.  相似文献   
7.
8.
A novel catalase-peroxidase (CP) from methanol-grown cells of Mycobacterium sp. strain JC1 was purified. The CP exhibited properties of both typical mycobacterial CPs (i.e. strict pH optimum, labile to heat treatment, capable of oxidizing NADH, and resistant to inhibition by 3-amino-1,2,4-triazole) and true catalases (i.e. stable against ethanol-chloroform treatment). The enzyme oxidized methanol and shared common antigenic groups with other mycobacteria. Isoniazid had almost no effect on the growth and expression of CP but inhibited the enzyme activity to some extent. Sodium nitroprusside arrested the growth but strongly stimulated the expression of CP with a concomitant increase in activity after the mid-exponential growth phase.  相似文献   
9.
The recent increase in the incidence of tuberculosis with the emergence of multidrug-resistant (MDR) cases has lead to the search for new drugs that are effective against MDR strains of Mycobacterium tuberculosis and can augment the potential of existing drugs against tuberculosis. In the present study, we investigated the activities of a naphthoquinone, 7-methyljuglone, isolated from the roots of Euclea natalensis alone and in combination with other antituberculous drugs against extracellular and intracellular M. tuberculosis. Combinations of 7-methyljuglone with isoniazid or rifampicin resulted in a four to six-fold reduction in the minimum inhibitory concentration of each compound. Fractional inhibitory concentration (FIC) indexes obtained were 0.2 and 0.5, respectively, for rifampicin and isoniazid, suggesting a synergistic interaction between 7-methyljuglone and these anti-TB drugs. The ability of 7-methyljuglone to enhance the activity of isoniazid and rifampicin against both extracellular and intracellular organisms suggests that 7-methyljuglone may serve as a promising compound for development as an anti-tuberculous agent.  相似文献   
10.
The effect of in vivo administration of ethanol on the gamma-aminobutyric acidA (GABAA) receptor-coupled chloride channel was studied by measuring ex vivo t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding in the rat cerebral cortex. Intragastric administration of ethanol (0.5-1 g/kg) elicited in 40 min a significant decrease of [35S]TBPS binding to unwashed cortical membrane preparations, an effect mimicked by diazepam (0.5-1 mg/kg, i.p.). However, Scatchard plot analysis indicated that, unlike the case with diazepam, the decrease was entirely due to a reduction in the apparent affinity of [35S]TBPS receptors with no change in the total number of binding sites. Moreover, ethanol, like diazepam, reduced the increase of [35S]TBPS binding elicited by isoniazid (350 mg/kg, s.c.), an inhibitor of the GABAergic transmission. Finally, ethanol markedly potentiated the inhibitory action of diazepam on [35S]TBPS binding. The results suggest that ethanol, like benzodiazepines, enhances the function of the GABAA-coupled chloride channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号