首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2010年   1篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1982年   1篇
排序方式: 共有35条查询结果,搜索用时 687 毫秒
1.
Pueraria lobata root (PLR), well known as Kudzu root, has recently become commercially available in Western dietary supplements for menopausal symptoms. The scientific basis for its action has been attributed to the action of phytoestrogens. This study aimed to investigate the estrogen-like activity of isoflavonoids isolated from P. lobata root and their safety with respect to their effect on breast cancer cell proliferation. In an E-screen assay, crude MeOH extract of PLR significantly increased the proliferation of MCF-7 cells in a concentration-dependent manner. Among the four fractions obtained by solvent fractionation of MeOH extract, the n-BuOH fraction had significant estrogen-like activities at all concentrations tested. Phytochemical analysis of the n-BuOH fraction led to the isolation of 10 isoflavones (110), among which genistein (10) had significant estrogen-like activities at all concentrations tested. These activities were significantly enhanced by treatment with genistein and 17β-estradiol compared with 17β-estradiol alone, and this effect was mediated by decreased expression of estrogen receptor (ER)α and phospho-ERα in MCF-7 cells. In a cell cytotoxicity assay, genistein (10) exhibited significant cytotoxicity in both ER-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. This cytotoxicity was characterized by the induction of apoptotic cells stained with annexin V conjugated with Alexa Fluor 488 and involved activation of mitochondria-independent and -dependent apoptosis pathways in MCF-7 cells. Our results demonstrated that genistein (10) has estrogen-like effects dependent on ER pathway activation and anti-proliferative effects mediated by the apoptosis pathway rather than the ER pathway in MCF-7 breast cancer cells.  相似文献   
2.
Kamel MS 《Phytochemistry》2003,63(4):449-452
From the aerial parts of Lupinus hartwegii, two new flavone C-glycosides apigenin-7-O-beta-apiofuranosyl-6, 8-di-C-beta-glucopyranoside (1) and apigenin-7-O-beta-apiofuranosyl-6-C-beta-glucopyranosyl-8-C-(6z.qprime;-O-E-feruloyl)- beta-glucopyranoside (2) have been isolated together with two known isoflavonoid glucosides genistein-7-O-beta-glucopyranoside (3) and genistein-7, 4'-di-O-beta-glucopyranoside (4) as well as two known compounds ferulic acid 4-O-beta-glucopyranoside (5) and sparteine (6). The structures of the isolated compounds were verified by means of MS and NMR spectral analyses.  相似文献   
3.
A beta-glycosidase was purified from the seeds of Dalbergia nigescens Kurz based on its ability to hydrolyse p-nitrophenyl beta-glucoside and beta-fucoside. This enzyme did not hydrolyze various glycosidic substrates efficiently, so it was used to identify its own natural substrates. Two substrates were identified, isolated and their structures determined as: compound 1, dalpatein 7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside and compound 2, 6,2',4',5'-tetramethoxy-7-hydroxy-7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (dalnigrein7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside). The beta-glycosidase removes the sugar from these glycosides as a disaccharide, despite its initial identification as a beta-glucosidase and beta-fucosidase.  相似文献   
4.
Cytochrome P450s in flavonoid metabolism   总被引:2,自引:0,他引:2  
In this review, cytochrome P450s characterized at the molecular level catalyzing aromatic hydroxylations, aliphatic hydroxylations and skeleton formation in the flavonoid metabolism are surveyed. They are involved in the biosynthesis of anthocyanin pigments and condensed tannin (CYP75, flavonoid 3′,5′-hydroxylase and 3′-hydroxylase), flavones [CYP93B, (2S)-flavanone 2-hydroxylase and flavone synthase II], and leguminous isoflavonoid phytoalexins [CYP71D9, flavonoid 6-hydroxylase; CYP81E, isoflavone 2′-hydroxylase and 3′-hydroxylase; CYP93A, 3,9-dihydroxypterocarpan 6a-hydroxylase; CYP93C, 2-hydroxyisoflavanone synthase (IFS)]. Other P450s of the flavonoid metabolism include methylenedioxy bridge forming enzyme, cyclases producing glyceollins, flavonol 6-hydroxylase and 8-dimethylallylnaringenin 2′-hydroxylase. Mechanistic studies on the unusual aryl migration by CYP93C, regulation of IFS expression in plant organs and its biotechnological applications are introduced, and flavonoid metabolisms by non-plant P450s are also briefly discussed.  相似文献   
5.
6.
Chevalierinosides B (1) and C (2), two new isoflavonoid glycosides, characterized as biochanin A 7-O-[β-d-apiofuranosyl-(1→2)-β-d-glucopyranoside] and genistein 7-O-[β-d-apiofuranosyl-(1→2)-β-d-glucopyranoside], together with the known isoflavonoids, chevalierinoside A (3) and genistein 7-O-β-d-glucopyranoside (4), kaempferol 3-O-β-d-glucopyranoside (5) and triterpenes, friedelin (6), betulinic acid (7), 30-oxobetulinic acid (8), 30-hydroxybetulinic acid (9), were isolated from the stem bark of Antidesma laciniatum Muell. Arg. (syn. Antidesma chevalieri Beille). Their structures were established by direct interpretation of their spectral data, mainly HR-TOFESIMS, 1D-NMR (1H, 13C and DEPT) and 2D-NMR (COSY, NOESY, TOCSY, HSQC and HMBC), and by comparison with the literature.  相似文献   
7.
Among the antimicrobial phytoalexins produced by Phaseolus vulgaris (French bean) are the prenylated isoflavonoids kievitone and phaseollidin. Two enzyme activities, kievitone hydratase and phaseollidin hydratase, occur in culture filtrates of the bean pathogen, Fusarium solani f. sp. phaseoli, and catalyse similar hydration reactions on the dimethylallyl moieties of the phytoalexins. The enzymes nearly co-purified during hydroxyapatite chromatography followed by preparative native gel electrophoresis. Eluates from successive slices taken from the native gel were assayed for both activities. Although they were not completely separated in the native gel, the activity profiles indicated that the two activities were distinct. The Km of phaseollidin hydratase for phaseollidin was approximately 7 microM.  相似文献   
8.
A cDNA encoding UDP-glucose: formononetin 7-O-glucosyltransferase, designated UGT73F1, was cloned from yeast extract-treated Glycyrrhiza echinata L. cell-suspension cultures using probes from Scutellaria baicalensis UDP-glucose: flavonoid 7-O-glucosyltransferase. The open reading frame of the UGT73F1 cDNA encodes a 441-amino-acid protein with a predicted molecular mass of 48.7 kDa. The deduced amino acid sequence showed that the protein is related to the stress-inducible glucosyltransferases. UGT73F1 mRNA was not detected in untreated G. echinata cultures but was transiently induced by treatment with yeast extract. Recombinant UGT73F1 was expressed as a histidine-tag fusion protein in Escherichia coli and purified to near homogeneity by nickel chelate chromatography. The purified recombinant enzyme was selective for isoflavonoid, formononetin and daidzein as substrates, while flavonoids and various tested non-flavonoid compounds were poor substrates.Abbreviations GT UDP-glycosyltransferase - rUGT73F1 recombinant UGT73F1 - UBGT: UDP-glucose: baicalein 7-O-glucosyltransferase The nucleotide sequence data reported in this paper will appear in the DDBJ/EMBL/GenBank nucleotide sequence databases with the accession number AB098614.  相似文献   
9.
Isoflavonoids, which include a variety of secondary metabolites, are derived from the phenylpropanoid pathway and are distributed predominantly in leguminous plants. These compounds play a critical role in plant–environment interactions and are beneficial to human health. Isoflavone synthase (IFS) is a key enzyme in isoflavonoid synthesis and shares a common substrate with flavanone‐3‐hydroxylase (F3H) and flavone synthase II (FNS II). In this study, CRISPR/Cas9‐mediated multiplex gene‐editing technology was employed to simultaneously target GmF3H1, GmF3H2 and GmFNSII‐1 in soya bean hairy roots and plants. Various mutation types and frequencies were observed in hairy roots. Higher mutation efficiencies were found in the T0 transgenic plants, with a triple gene mutation efficiency of 44.44%, and these results of targeted mutagenesis were stably inherited in the progeny. Metabolomic analysis of T0 triple‐mutants leaves revealed significant improvement in isoflavone content. Compared with the wild type, the T3 generation homozygous triple mutants had approximately twice the leaf isoflavone content, and the soya bean mosaic virus (SMV) coat protein content was significantly reduced by one‐third after infection with strain SC7, suggesting that increased isoflavone content enhanced the leaf resistance to SMV. The isoflavone content in the seeds of T2 triple mutants was also significantly increased. This study provides not only materials for the improvement of soya bean isoflavone content and resistance to SMV but also a simple system to generate multiplex mutations in soya bean, which may be beneficial for further breeding and metabolic engineering.  相似文献   
10.
The leguminous isoflavonoid skeleton is constructed by P450 2-hydroxyisoflavanone synthase (CYP93C). Two active-site residues of CYP93C2, Ser 310 and Lys 375, are critical for unusual aryl migration of the flavanone substrate. Leu 371 is located near the substrate in a homology model, and mutant proteins regarding this residue were expressed in recombinant yeast microsomes. The single mutant, L371V, yielded only inactive P420, but multiple mutants incorporating K375T restored the P450 fold: the S310T-L371V-K375T triple mutant showed four times higher P450 level than the wild type. L371V-K375T and S310T-L371V-K375T produced a mixture of major 3beta-hydroxyflavanone and minor flavone, and 100% flavone, respectively, from a flavanone. Thus, Leu 371 appeared to control the substrate accommodation in favor of hydrogen abstraction from C-3 of the flavanone molecule and contribute to the P450 fold under the presence of Lys 375, the residue responsible for aryl migration. The molecular evolution of CYP93 enzymes is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号