首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   1篇
  国内免费   1篇
  2022年   2篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2011年   9篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   6篇
  2006年   9篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有69条查询结果,搜索用时 46 毫秒
1.
Genistin is one of the bioactive isoflavone glucosides found in legumes, which have great nutraceutical and pharmaceutical significance. The market available isoflavones are currently produced by direct plant extraction. However, its low abundance in plant and structural complexity hinders access to this phytopharmaceutical via plant extraction or chemical synthesis. Here, the E. coli cell factory for sustainable production of genistin from glycerol was constructed. First, we rebuilt the precursor genistein biosynthesis pathway in E. coli, and its titer was then increased by 668% by identifying rate-limiting steps and applying an artificial protein scaffold system. Then de novo production of genistin from glycerol was achieved by functional screening and introduction of glycosyl-transferases, UDP-glucose pathway and specific genistin efflux pumps, and 48.1 mg/L of genistin was obtained. A further engineered E. coli strain equipped with an improved malonyl-CoA pathway, alternative glycerol-utilization pathways, acetyl-CoA carboxylase (ACC), and CRISPR interference (CRISPRi) mediated regulation produced up to 137.8 mg/L of genistin in shake flask cultures. Finally, 202.7 mg/L genistin was achieved through fed-batch fermentation in a 3-L bioreactor. This study represents the de novo genistin production from glycerol for the first time and will lay the foundation for low-cost microbial production of glucoside isoflavones. In addition, the multiphase workflow may provide a reference for engineering the biosynthetic pathways in other microbial hosts as well, for green manufacturing of complex natural products.  相似文献   
2.
Five isoflavone glycosides, named derriscandenosides A–E (1–5), were isolated from the stems of Derris scandens, together with ten known compounds comprising one isoflavone, two benzoic acid derivatives, three glucosyl isoflavones and four rhamnosyl-(1→6)-glucosyl isoflavones. The structures of the glycosides were assigned on the basis of spectroscopic data, especially of the acetate derivatives. Three known rhamnosyl-(1→6)-glucosyl isoflavones isolated from a crude fraction were retested for hypotensive activity with varying results.  相似文献   
3.
Genistein   总被引:15,自引:0,他引:15  
Genistein (4',5,7-trihydroxyisoflavone) is a common precursor in the biosynthesis of antimicrobial phytoalexins and phytoanticipins in legumes, and an important nutraceutical molecule found in soybean seeds. Genistein is a phytoestrogen with a wide variety of pharmacological effects in animal cells, including tyrosine kinase inhibition, and dietary genistein ingestion has been linked, through epidemiological and animal model studies, with a range of potential health beneficial effects. These include chemoprevention of breast and prostate cancers, cardiovascular disease and post-menopausal ailments. In spite of an extensive literature on the effects of dietary genistein, questions still exist as to its potential overall benefits as a component of the human diet. Genistein can be synthesized chemically via the deoxybenzoin or chalcone route. Genistein is synthesized in plants from the flavanone naringenin by a novel ring migration reaction catalyzed by the cytochrome P450 enzyme isoflavone synthase (IFS). IFS genes have recently been cloned from a number of plant species, and production of genistein can be now achieved in non-legumes by recombinant DNA approaches.  相似文献   
4.
Soidinsalo O  Wähälä K 《Steroids》2007,72(13):851-854
The first synthesis of daidzein 7-O-beta-D-glucuronide-4'-O-sulfate, a mixed conjugate of an important dietary phytoestrogen is described.  相似文献   
5.
6.
Only about one third of humans possess a microbiota capable of transforming the dietary isoflavone daidzein into equol. Little is known about the dietary and physiological factors determining this ecological feature. In this study, the in vitro metabolism of daidzein by faecal samples from four human individuals was investigated. One culture produced the metabolites dihydrodaidzein and O-desmethylangolensin, another produced dihydrodaidzein and equol. From the latter, a stable and transferable mixed culture transforming daidzein into equol was obtained. Molecular fingerprinting analysis (denaturing gradient gel electrophoresis) showed the presence of four bacterial species of which only the first three strains could be brought into pure culture. These strains were identified as Lactobacillus mucosae EPI2, Enterococcus faecium EPI1 and Finegoldia magna EPI3, and did not produce equol in pure culture. The fourth species was tentatively identified as Veillonella sp strain EP. It was found that hydrogen gas in particular, but also butyrate and propionate, which are all colonic fermentation products from poorly digestible carbohydrates, stimulated equol production by the mixed culture. However, when fructo-oligosaccharides were added, equol production was inhibited. Furthermore, the equol-producing capacity of the isolated culture was maintained upon its addition to a faecal culture originating from a non-equol-producing individual.  相似文献   
7.
Aging seems to be due to the accumulation of oxidative damage in cells and molecules. On the other hand, menopause and ovariectomy induce deleterious effects on different organs and systems that have been shown to be counteracted by estrogens and in a not so evident form also with phytoestrogens. The present study has investigated whether the administration of a commercial soy extract that contains approximately 10% isoflavones was able to modify some parameters related to oxidative stress and inflammation in hepatocytes isolated from old ovariectomized female Wistar rats. Eighteen 22-month-old animals that had been previously ovariectomized at 12 months of age were divided into four groups: ovariectomized control rats, estradiol-treated ovariectomized females and ovariectomized rats treated with isoflavones. Six intact female rats of 2 months of age were used as reference group. Hepatocytes were isolated and cultured, and carbon monoxide (CO) and nitric oxide (NO) release, as well as adenosyl triphosphate (ATP), cyclic guanosyl monophosphate (cGMP), phosphatidylcholine (PC) and lipid peroxide (LPO) content of cells were evaluated. Uterus was also removed and weighed. Hepatocytes isolated from old ovariectomized rats showed a decrease in ATP content as compared to young animals. Age also induced an increase in LPO cell content. NO, CO and cGMP were augmented with age, and PC synthesis showed a dramatic reduction. Treatment with either estradiol or isoflavones were able to improve all the mentioned parameters altered in hepatocytes isolated from old ovariectomized rats, and the magnitude of the improvement was similar for both treatments. Ovariectomy induced a significant reduction in uterine weight, which was significantly counteracted by estradiol treatment but not by isoflavone administration. In conclusion, the administration of a soy extract containing isoflavones seems to prevent oxidative changes in hepatocytes isolated from old ovariectomized female rats, without modifying uterus weight.  相似文献   
8.
Yang Y  Fix D 《Mutation research》2006,600(1-2):193-206
Genistein, the main isoflavone in soy, has received considerable attention for its potential anti-carcinogenic properties. In a previous report, we investigated the possible role of genistein in anti-mutagenesis, using an Escherichia coli reversion assay system. Genistein reduced ENU-induced mutagenesis in a dose-dependent manner and the reduction of mutation frequency was differential among several categories of mutation. Most notable was a loss of transversion mutations, which require SOS functions. In this report, we further investigated the anti-mutagenic effect of genistein using a genetic approach. E. coli strains having alterations in genes involved in SOS-mutagenesis were examined, as were strains having defects in proteins that might serve as potential targets for genistein. The results showed that ENU-induced mutations produced in recA730 and lexA(Def) strains, both expressing a constitutive SOS response, were reduced by genistein to a lesser extent than in the wild-type strain. The effect of genistein was not entirely abolished, however. ENU mutagenesis in a umuC derivative, which reflects predominantly transition mutations, was unaffected by genistein. ENU-induced mutations in strains having defects in topA, gyrA, typA or uspA were not different than the wild-type, suggesting that these gene products were not involved in genistein's anti-mutagenic effect. In addition, we determined the distribution of genistein in various cellular fractions using HPLC. These studies revealed that genistein could be recovered from E. coli cells grown on agar media containing genistein; the intracellular concentration was similar to that in the agar plates. Further, most of the genistein recovered was associated with proteins in the cytosolic fraction and little partitioned in the membrane fraction. In vitro studies showed that genistein could be precipitated from a protein (BSA) containing solution. Finally, we examined the effect of genistein on formation of the RecA filament on ssDNA in vitro and observed an inhibition at high concentrations of genistein. In total, these results suggested that genistein may reduce SOS-dependent mutagenesis by reducing the interaction of RecA protein with ssDNA. As a consequence, genistein could cause a reduction in (1) the overall SOS response (confirmed using β-galactosidase assays) and (2) trans-lesion DNA synthesis by DNA polymerase V.  相似文献   
9.
Common emphasis of the fact that isoflavonoids are characteristic metabolites of leguminous plants sometimes leads to overlooking that the presence of isoflavonoids has been reported in several dozen other families. The spectrum of isoflavonoid producing taxa includes the representatives of four classes of multicellular plants, namely the Bryopsida, the Pinopsida, the Magnoliopsida and the Liliopsida. A review, recently published by Reynaud et al. [Reynaud, J., Guilet D., Terreux R., Lussignol M., Walchshofer N., 2005. Isoflavonoids in non-leguminous families: an update. Nat. Prod. Rep. 22, 504-515], provided listing of 164 isoflavonoids altogether reported in 31 non-leguminous angiosperm families. In this contribution we complement the abovementioned inventory bringing the references on further 17 isoflavonoid producing families and on additional 49 isoflavonoids reported to occur in non-leguminous plants.  相似文献   
10.
Genistein and orobol 8-C-beta-D-glucopyranosides (1 and 3) were firstly synthesized in overall yields of 39% and 41% from 2,4-di-O-benzylphloroacetophenone (4), as follows: (1) the formation of the chalcone (6, 7) by aldol condensation of the benzyl-protected C-glycosylphloroacetophenone (5), a key intermediate of the total synthesis of 1 and 3 and synthesized by a C-glycosylation method involving the O-->C glycoside rearrangement of 4 in 96% yield; (2) the formation of isoflavones (10, 11 and 12, 13) by the formation of acetals by oxidative rearrangement of the protected chalcones (8 and 9) using Tl(NO3)3, followed by acid-catalyzed cyclization; (3) a final debenzylation by hydrogenolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号