首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   2篇
  2022年   1篇
  2020年   2篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Engineering microbial hosts for the production of higher alcohols looks to combine the benefits of renewable biological production with the useful chemical properties of larger alcohols. In this review we outline the array of metabolic engineering strategies employed for the efficient diversion of carbon flux from native biosynthetic pathways to the overproduction of a target alcohol. Strategies for pathway design from amino acid biosynthesis through 2-keto acids, from isoprenoid biosynthesis through pyrophosphate intermediates, from fatty acid biosynthesis and degradation by tailoring chain length specificity, and the use and expansion of natural solvent production pathways will be covered.  相似文献   
2.
探究pflB、frdAB、fnr和AdhE四基因缺失突变株对大肠杆菌工程菌发酵生产异丁醇的影响。运用Red重组系统敲除大肠杆菌BW25113的pflB、frdAB、fnr和AdhE基因,构建pflB、frdAB、fnr和AdhE四基因缺失突变株E.coliBW25113H,结合本实验室已经构建的表达质粒pSTV29-alsS-ilvC-ilvD-kdcA,并检测该工程菌在1L发酵罐的发酵过程中的生物量、突变菌株的稳定性、异丁醇产量及有机酸含量的变化情况。成功获得pflB、frdAB、fnr和AdhE四基因缺失突变株BW25113H。发酵结果表明,该工程菌能以较长时间,较高比生长速率保持对数生长期,其稳定性较好,异丁醇产量增加了40%。成功构建pflB、frdAB、fnr和AdhE四基因缺失突变株BW25113H,结合非自身发酵途径使异丁醇的产量由3 g/L提升至4.2 g/L。  相似文献   
3.
Cyanobacteria hold promise for renewable chemical production due to their photosynthetic nature, but engineered strains frequently display poor production characteristics. These difficulties likely arise in part due to the distinctive photoautotrophic metabolism of cyanobacteria. In this work, we apply a genome-scale metabolic model of the cyanobacteria Synechococus sp. PCC 7002 to identify strain designs accounting for this unique metabolism that are predicted to improve the production of various biofuel alcohols (e.g. 2-methyl-1-butanol, isobutanol, and 1-butanol) synthesized via an engineered biosynthesis pathway. Using the model, we identify that the introduction of a large, non-native NADH-demand into PCC 7002's metabolic network is predicted to enhance production of these alcohols by promoting NADH-generating reactions upstream of the production pathways. To test this, we construct strains of PCC 7002 that utilize a heterologous, NADH-dependent nitrite reductase in place of the native, ferredoxin-dependent enzyme to create an NADH-demand in the cells when grown on nitrate-containing media. We find that photosynthetic production of both isobutanol and 2-methyl-1-butanol is significantly improved in the engineered strain background relative to that in a wild-type background. We additionally identify that the use of high-nutrient media leads to a substantial prolongment of the production curve in our alcohol production strains. The metabolic engineering strategy identified and tested in this work presents a novel approach to engineer cyanobacterial production strains that takes advantage of a unique aspect of their metabolism and serves as a basis on which to further develop strains with improved production of these alcohols and related products.  相似文献   
4.
乙酰乳酸合成酶基因的克隆与高效表达   总被引:1,自引:0,他引:1  
【目的】乙酰乳酸合成酶(ALS)是异丁醇生物合成中的关键酶,实现ALS的高效表达对调控异丁醇代谢途径有重要意义。【方法】根据GenBank中ALS的基因序列(alsS)设计引物,以枯草芽孢杆菌168基因组DNA为模板通过PCR扩增技术得到目标酶基因,目的片段全长为1 713 bp。将alsS连接到pET-30a(+)上,得到重组质粒pET-30a(+)-alsS,并在Escherichia coli BL2l(DE3)中实现表达。【结果】对表达条件进行了优化,获得最佳表达条件为:诱导温度30°C,诱导起始菌体OD600为0.6 0.8,诱导剂IPTG浓度为1 mmol/L,诱导时间为6 h。表达的乙酰乳酸合成酶大部分以可溶性形式存在于菌体内,优化后酶活可达到24.4 U/mL,比优化前提高了7.13倍。经HisTrapTMFF亲和层析后获得电泳纯的ALS,比活为95.2 U/mg。【结论】ALS的有效表达为在大肠杆菌体内构建异丁醇代谢途径打下了基础。  相似文献   
5.
[目的]改造大肠杆菌缬氨酸合成途径,使其能够代谢合成异丁醇.[方法]将乳酸乳球菌(Lactococcus lactis) 1.2829的2-酮异戊酸脱羧酶基因(kivD)和醇脱氢酶基因(adhA)串联克隆到大肠杆菌DH5α宿主中表达.[结果]经过改造的宿主菌发酵24 h后异丁醇产量为0.12 g/L.酶活测定实验发现,kivD和adhA基因在宿主菌中均得到表达,但由于KivD的低表达量导致宿主菌最终的异丁醇合成能力偏低.通过研究温度和pH对KivD和AdhA酶活的影响,最终选定二者的最适温度为30℃,最适pH为6.5. [结论]通过向宿主菌导入外源异丁醇合成基因能够改造其自身代谢途径,从而合成异丁醇.  相似文献   
6.
Higher alcohols such as isobutanol possess several physical characteristics that make them attractive as biofuels such as higher energy densities and infrastructure compatibility. Here we have developed a rapid evolutionary strategy for isolating strains of Escherichia coli that effectively produce isobutanol from glucose utilizing random mutagenesis and a growth selection scheme. By selecting for mutants with the ability to grow in the presence of the valine analog norvaline, we obtained E. coli NV3; a strain with improved 24-h isobutanol production (8.0 g/L) in comparison with a productivity of 5.3 g/L isobutanol obtained with the parental wild type strain. Genomic sequencing of NV3 identified the insertion of a stop codon in the C-terminus of the RNA polymerase σs-factor, RpoS. Upon repair of this inhibitory mutation (strain NV3r1), a final isobutanol titer of 21.2 g/L isobutanol was achieved in 99 h with a yield of 0.31 g isobutanol/g glucose or 76% of theoretical maximum. Furthermore, a mutation in ldhA, encoding d-lactate dehydrogenase, was identified in NV3; however, repair of LdhA in NV3r1 had no affect on LdhA activity detected from cell extracts or on isobutanol productivity. Further study of NV3r1 may identify novel genotypes that confer improved isobutanol production.  相似文献   
7.
Isobutanol and other branched-chain higher alcohols (BCHAs) are promising advanced biofuels derived from the degradation of branched-chain amino acids (BCAAs). The yeast Saccharomyces cerevisiae is a particularly attractive host for the production of BCHAs due to its high tolerance to alcohols and prevalent use in the bioethanol industry. Degradation of BCAAs begins with transamination reactions, catalyzed by branched-chain amino acid transaminases (BCATs) located in the mitochondria (Bat1p) and cytosol (Bat2p). However, the roles that these transaminases play in isobutanol production remain poorly understood and obscured by conflicting reports in the literature. In this work, we elucidate the influence of BCATs on isobutanol production in two genetic backgrounds (CEN.PK2-1C and BY4741). In the process, we uncover and characterize two competing isobutanol pathways, which can be manipulated by overexpressing or deleting BAT1 or BAT2, and adding or removing valine from the fermentation media. We show that deletion of BAT1 alone increases isobutanol production by 14.2-fold over wild type strains in media lacking valine, and examine how interactions between valine and the regulatory protein Ilv6p affect isobutanol production. Compartmentalizing the five-gene isobutanol biosynthetic pathway in mitochondria of BAT1 deletion strains results in an additional 2.1-fold increase in isobutanol production in the absence of valine. While valine inhibits isobutanol production, it boosts 2-methyl-1-butanol production. This work clarifies the role of transamination activity in BCHA biosynthesis, and develops valuable strategies and strains for future optimization of isobutanol production.  相似文献   
8.
9.
The microbial production of chemicals and fuels from plant biomass offers a sustainable alternative to fossilized carbon but requires high rates and yields of bioproduct synthesis. Z. mobilis is a promising chassis microbe due to its high glycolytic rate in anaerobic conditions that are favorable for large-scale production. However, diverting flux from its robust ethanol fermentation pathway to nonnative pathways remains a major engineering hurdle. To enable controlled, high-yield synthesis of bioproducts, we implemented a central-carbon metabolism control-valve strategy using regulated, ectopic expression of pyruvate decarboxylase (Pdc) and deletion of chromosomal pdc. Metabolomic and genetic analyses revealed that glycolytic intermediates and NADH accumulate when Pdc is depleted and that Pdc is essential for anaerobic growth of Z. mobilis. Aerobically, all flux can be redirected to a 2,3-butanediol pathway for which respiration maintains redox balance. Anaerobically, flux can be redirected to redox-balanced lactate or isobutanol pathways with ≥65% overall yield from glucose. This strategy provides a promising path for future metabolic engineering of Z. mobilis.  相似文献   
10.
On the basis of our previous studies of microbial L-valine production under oxygen deprivation, we developed isobutanol-producing Corynebacterium glutamicum strains. The artificial isobutanol synthesis pathway was composed of the first three steps of the L-valine synthesis pathway; and the subsequent Ehrlich Pathway: pyruvate was converted to 2-ketoisovalerate in the former reactions; and the 2-keto acid was decarboxylated into isobutyraldehyde, and subsequently reduced into isobutanol in the latter reactions. Although there exists redox cofactor imbalance in the overall reactions, i.e., NADH is generated via glycolysis whereas NADPH is required to synthesize isobutanol, it was resolved by taking advantage of the NAD-preferring mutant acetohydroxy acid isomeroreductase encoded by ilvCTM and the NAD-specific alcohol dehydrogenase encoded by adhA. Each enzyme activity to synthesize isobutanol was finely tuned by using two kinds of lac promoter derivatives. Efficient suppression of succinate by-production and improvement of isobutanol yield resulted from inactivation of pckA, which encodes phosphoenolpyruvate carboxykinase, whereas glucose consumption and isobutanol production rates decreased because of the elevated intracellular NADH/NAD+ ratio. On the other hand, introduction of the exogenous Entner–Doudoroff pathway effectively enhanced glucose consumption and productivity. Overexpression of phosphoenolpyruvate:carbohydrate phosphotransferase system specific to glucose and deletion of ilvE, which encodes branched-chain amino acid transaminase, further suppressed by-products and improved isobutanol productivity. Finally, the produced isobutanol concentration reached 280 mM at a yield of 84% (mol/mol glucose) in 24 h.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号