首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   1篇
  2022年   1篇
  2014年   3篇
  2013年   4篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   5篇
  2007年   1篇
  2006年   7篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2000年   1篇
  1999年   5篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   8篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
排序方式: 共有69条查询结果,搜索用时 31 毫秒
1.
Summary Plasmalemmal ionic currents from enzymatically-isolated protoplasts of suspension-cultured carrot cells were investigated by patch-clamp techniques. Among other currents, a novel hyperpolarization-activated, inwardly-rectifying, whole-cell current was observed. The activation of this current was fast in onset, and for large hyperpolarizations a characteristic, rapid voltage-dependent inactivation was seen. Ion substitution experiments indicate that this inward current was due mainly to efflux of chloride ions. No dependence on either internal or external calcium was found, and internal MgATP was not necessary. Surprisingly, zinc did not block this current. In hyperpolarized outside-out patches, inward single-channel chloride currents having an elementary conductance of ca. 100 pS were observed. The open probability increased with hyperpolarization. Similar single-channel currents were activated by slight negative pressure applied to the pipette. These chloride currents could contribute both to the control of membrane potential and in the regulation of osmotic balance in carrot cells.Abbreviations BAPTA 1,2-bis (2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - Ex Nernst equilibrium potential for ion x - NMDG N-methyl-D-glucamine - PMSF phenylmethylsulfonyl fluoride  相似文献   
2.
The effects of serotonin on the electrical properties of swim-gating neurons (cell 204) were examined in leech (Hirudo medicinalis) nerve cords. Exposure to serotonin decreased the threshold current required to elicit swim episodes by prolonged depolarization of an individual cell 204 in isolated nerve cords. This effect was correlated with a more rapid depolarization and an increased impulse frequency of cell 204 in the first second of stimulation. In normal leech saline, brief depolarizing current pulses (1 s) injected into cell 204 failed to elicit swim episodes. Following exposure to serotonin, however, identical pulses consistently evoked swim episodes. Thus, serotonin appears to transform cell 204 from a gating to a trigger cell.Serotonin had little effect on the steady-state currentvoltage relation of cell 204. However, serotonin altered the membrane potential trajectories in response to injected current pulses and increased the amplitude of rebound responses occurring at the offset of current pulses. These changes suggest that serotonin modulates one or more voltage dependent conductances in cell 204, resulting in a more rapid depolarization and greater firing rate in response to injected currents. Thus, modulation of intrinsic ionic conductances in cell 204 may account in part for the increased probability of swimming behavior induced by serotonin in intact leeches.Abbreviations AHP afterhyperpolarizing potential - DCC discontinuous current clamp - DP dorsal posterior nerve - G2 segmental ganglion 2 - PIR postinhibitory rebound - RMP resting membrane potential  相似文献   
3.
Electrophysiological properties of mouse bone marrow-derived mast cells (BMMC) were studied under the whole-cell clamp configuration. About one third of the cells were quiescent, but others expressed either inward or outward currents. Inwardly rectifying (IR) currents were predominant in 14% of the cells, and outwardly rectifying (OR) currents in 24%. The rest (22%) of the cells exhibited both inward and outward currents. The IR currents were eliminated by 1 mm Ba2+, and were partially inhibited by 100 μm quinidine. The reversal potential was dependent on extracellular K+, thereby indicating that K+ mediated the IR currents. The negative conductance region was seen at potentials positive to E K. The OR currents did not apparently depend on the extracellular K+ concentration, but were reduced by lowering the extracellular Cl? concentration. The OR currents were partially blocked by 1 mm Ba2+, and were further blocked by a Cl? channel blocker, 4,4′-diisothiocyano-2, 2′-stilbenedisulfonate (DIDS). In addition, the reversal potential of the OR currents was positively shifted by decreasing the ratio of external and internal Cl? concentrations, suggesting that Cl? was a major ion carrier. In cells exhibiting IR currents, the membrane potential varied among cells and tended to depolarize by elevating the external K+ concentration. In cells with OR currents, the resting potential was hyperpolarized in association with an increase in conductance. These results suggest that BMMC have a heterogeneous electrophysiological profile that may underlie a variety of ion channels expressed in different phenotypes of mast cells. Activities of both the inwardly rectifying K+ channel and the outwardly rectifying Cl? channel seem to contribute to the regulation of the membrane potential.  相似文献   
4.
Some ectothermic vertebrates show unusually good tolerance to oxygen shortage and it is therefore assumed that they might, as a defense mechanism, decrease number or activity of ion channels in order to reduce membrane leakage and thereby ATP-dependent ion pumping in hypoxia. Although several studies have provided indirect evidence in favor of this channel arrest hypothesis, only few experiments have examined activity of ion channels directly from animals exposed to chronic hypoxia or anoxia in vivo. Here we compare the inwardly rectifying K+ current (IK1), a major leak and repolarizing K+ pathway of the heart, in cardiac myocytes of normoxic and hypoxic crucian carp, using the whole-cell and cell-attached single-channel patch-clamp methods. Whole-cell conductance of IK1 was 0.5 ± 0.04 nS/pF in normoxic fish and did not change during the 4 weeks hypoxic (O2 < 0.4 mg/l; 2.68 mmHg) period, meanwhile the activity of Na+/K+ATPase decreased 33%. Single-channel conductance of the IK1 was 20.5 ± 0.8 pS in control fish and 21.4 ± 1.1pS in hypoxic fish, and the open probability of the channel was 0.80 ± 0.03 and 0.74 ± 0.04 (P > 0.05) in control and hypoxic fish, respectively. Open and closed times also had identical distributions in normoxic and hypoxic animals. These results suggest that the density and activity of the inward rectifier K+ channel is not modified by chronic hypoxia in ventricular myocytes of the crucian carp heart. It is concluded that instead of channel arrest, the hypoxic fish cardiac myocytes obtain energy savings through action potential arrest due to hypoxic bradycardia.  相似文献   
5.
Arginine residue at position 285 (R285) in the intracellular C-terminal domain of inward rectifier potassium channel Kir2.2 is conserved in many species, but missing in previously reported human Kir2.2 sequences. We here identified the human Kir2.2 gene in normal individuals, which contained R285 in the deduced amino-acid sequence (hKir2.2/R285). All 30 individuals we examined were homozygous for Kir2.2/R285 gene. The hKir2.2/R285 was electrophysiologically functional in both mammalian cells and Xenopus oocytes. However, the hKir2.2 missing R285 was functional only in Xenopus oocytes, but not in mammalian cells. Thus, R285 in Kir2.2 is important for its functional expression in mammalian cells.  相似文献   
6.
Genistein is an isoflavone with potent inhibitory activity on protein tyrosine kinase. Previous studies have shown that genistein has additional effects, among which the direct blocking effects on various ionic channels have recently been disclosed. Using whole-cell voltage clamp and current clamp techniques, we demonstrate that micromolar concentrations of genistein dose-dependently and reversibly inhibit the inward rectifying K(+) current, and depolarize the resting membrane potential, resulting in abnormal automaticity in guinea pig ventricular myocytes. Interestingly, another potent tyrosine kinase inhibitor, tyrphostin 51, did not produce the same inhibitory effect, while the inactive analogue of genistein, daidzein, had a similar blocking effect. We suggest that genistein directly blocks the inward rectifying K(+) current in ventricular myocytes, and one should be cautious of its pro-arrhythmic effect in clinical use.  相似文献   
7.
Stellate cells (SCs) of the entorhinal cortex generate prominent subthreshold oscillations that are believed to be important contributors to the hippocampal theta rhythm. The slow inward rectifier I h is expressed prominently in SCs and has been suggested to be a dominant factor in their integrative properties. We studied the input-output relationships in stellate cells (SCs) of the entorhinal cortex, both in control conditions and in the presence of the I h antagonist ZD7288. Our results show that I h is responsible for SCs’ subthreshold resonance, and contributes to enhanced spiking reliability to theta-rich stimuli. However, SCs still exhibit other traits of rhythmicity, such as subthreshold oscillations, under I h blockade. To clarify the effects of I h on SC spiking, we used a generalized form of principal component analysis to show that SCs select particular features with relevant temporal signatures from stimuli. The spike-selected mix of those features varies with the frequency content of the stimulus, emphasizing the inherent nonlinearity of SC responses. A number of controls confirmed that this selectivity represents a stimulus-induced change in the cellular input-output relationship rather than an artifact of the analysis technique. Sensitivity to slow features remained statistically significant in ZD7288. However, with I h blocked, slow stimulus features were less predictive of spikes and spikes conveyed less information about the stimulus over long time scales. Together, these results suggest that I h is an important contributor to the input-output relationships expressed by SCs, but that other factors in SCs also contribute to subthreshold oscillations and nonlinear selectivity to slow features. Action Editor: Xiao-Jing Wang  相似文献   
8.
Dunkel Marcel 《FEBS letters》2010,584(11):2433-2439
Vacuolar tandem-pore channels could not be analysed in Xenopus oocytes so far, due to misguided translocation. Owing to the conservation of their pore regions, we were able to prepare functional pore-chimeras between the plasma membrane localised TPK4 and vacuolar TPKs. Thereby, we found evidence that TPK2, TPK3 and TPK5, just like TPK4, form potassium-selective channels with instantaneous current kinetics. Homology modelling and mutational analyses identified a pore-located aspartate residue (Asp110), which is involved in potassium permeation as well as in inward rectification of TPK4. Furthermore, dominant-negative mutations in the selectivity filter of either pore one or two (Asp86, Asp200) rendered TPK4 non-functional. This observation supports the notion that the functional TPK4 channel complex is formed by two subunits.  相似文献   
9.
Inward rectifier K(+) (Kir) channels are activated by phosphatidylinositol-(4,5)-bisphosphate (PIP(2)), but G protein-gated Kir (K(G)) channels further require either G protein βγ subunits (Gβγ) or intracellular Na(+) for their activation. To reveal the mechanism(s) underlying this regulation, we compared the crystal structures of the cytoplasmic domain of K(G) channel subunit Kir3.2 obtained in the presence and the absence of Na(+). The Na(+)-free Kir3.2, but not the Na(+)-plus Kir3.2, possessed an ionic bond connecting the N terminus and the CD loop of the C terminus. Functional analyses revealed that the ionic bond between His-69 on the N terminus and Asp-228 on the CD loop, which are known to be critically involved in Gβγ- and Na(+)-dependent activation, lowered PIP(2) sensitivity. The conservation of these residues within the K(G) channel family indicates that the ionic bond is a character that maintains the channels in a closed state by controlling the PIP(2) sensitivity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号