首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2693篇
  免费   138篇
  国内免费   27篇
  2024年   2篇
  2023年   31篇
  2022年   42篇
  2021年   53篇
  2020年   66篇
  2019年   60篇
  2018年   67篇
  2017年   54篇
  2016年   51篇
  2015年   80篇
  2014年   199篇
  2013年   158篇
  2012年   158篇
  2011年   210篇
  2010年   133篇
  2009年   129篇
  2008年   150篇
  2007年   144篇
  2006年   142篇
  2005年   118篇
  2004年   111篇
  2003年   106篇
  2002年   60篇
  2001年   31篇
  2000年   28篇
  1999年   31篇
  1998年   23篇
  1997年   19篇
  1996年   27篇
  1995年   31篇
  1994年   23篇
  1993年   18篇
  1992年   32篇
  1991年   21篇
  1990年   9篇
  1989年   13篇
  1988年   13篇
  1987年   12篇
  1986年   16篇
  1985年   20篇
  1984年   42篇
  1983年   24篇
  1982年   33篇
  1981年   25篇
  1980年   11篇
  1979年   16篇
  1978年   4篇
  1977年   6篇
  1976年   2篇
  1972年   2篇
排序方式: 共有2858条查询结果,搜索用时 15 毫秒
1.
1. Because L-asparagine augments insulin release evoked by L-leucine, the metabolism of these two amino acids was investigated in rat pancreatic islets. 2. L-Leucine inhibited the uptake and deamidation of L-asparagine, but failed to exert any obvious primary effect upon the further catabolism of aspartate derived from exogenous asparagine. 3. L-Asparagine augmented the oxidation of L-leucine, and effect possibly attributable to activaion of 2-ketoisocaproate dehydrogenase. 4. The association of L-asparagine and L-leucine exerted a sparing action on the utilization of endogenous amino acids, so that the integrated rate of nutrients oxidation was virtually identical in the sole presence of L-leucine and simultaneous presence of L-asparagine and L-leucine, respectively. 5. It is proposed that the enhancing action of L-asparagine upon insulin release evoked by L-leucine is attributable to an increased generation rate of cytosolic NADPH rather than any increase in nutrients oxidation.  相似文献   
2.
《Cell reports》2020,30(3):630-641.e5
  1. Download : Download high-res image (118KB)
  2. Download : Download full-size image
  相似文献   
3.
Nitric oxide synthase (NOS) may be uncoupled to produce superoxide rather than nitric oxide (NO) under pathological conditions such as diabetes mellitus and insulin resistance, leading to cardiac contractile anomalies. Nonetheless, the role of NOS uncoupling in insulin resistance-induced cardiac dysfunction remains elusive. Given that folic acid may produce beneficial effects for cardiac insufficiency partially through its NOS recoupling capacity, this study was designed to evaluate the effect of folic acid on insulin resistance-induced cardiac contractile dysfunction in a sucrose-induced insulin resistance model. Mice were fed a sucrose or starch diet for 8 weeks before administration of folic acid in drinking water for an additional 4 weeks. Cardiomyocyte contractile and Ca2+ transient properties were evaluated and myocardial function was assessed using echocardiography. Our results revealed whole body insulin resistance after sucrose feeding associated with diminished NO production, elevated peroxynitrite (ONOO) levels, and impaired echocardiographic and cardiomyocyte function along with a leaky ryanodine receptor (RYR) and intracellular Ca2+ handling derangement. Western blot analysis showed that insulin resistance significantly promoted Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation, which might be responsible for the leaky RYR and cardiac mechanical dysfunction. NOS recoupling using folic acid reversed insulin resistance-induced changes in NO and ONOO, CaMKII phosphorylation, and cardiac mechanical abnormalities. Taken together, these data demonstrated that treatment with folic acid may reverse cardiac contractile and intracellular Ca2+ anomalies through ablation of CaMKII phosphorylation and RYR Ca2+ leak.  相似文献   
4.
5.
The G protein-coupled receptor 40 (GPR40) mediates enhancement of glucose-stimulated insulin secretion in pancreatic β cells. The GPR40 agonist has been attracting attention as a novel insulin secretagogue with glucose dependency for the treatment of type 2 diabetes. The optimization study of compound 1 led to a potent and bioavailable GPR40 agonist 24, which showed insulin secretion and glucose lowering effects in rat OGTT. Compound 24 is a potential lead compound for a novel insulin secretagogue with a low risk of hypoglycemia.  相似文献   
6.
Detection of variations in blood glucose concentrations by pancreatic &#103 -cells and a subsequent appropriate secretion of insulin are key events in the control of glucose homeostasis. Because a decreased capability to sense glycemic changes is a hallmark of type 2 diabetes, the glucose signalling pathway leading to insulin secretion in pancreatic &#103 -cells has been extensively studied. This signalling mechanism depends on glucose metabolism and requires the presence of specific molecules such as GLUT2, glucokinase and the K ATP channel subunits Kir6.2 and SUR1. Other cells are also able to sense variations in glycemia or in local glucose concentrations and to modulate different physiological functions participating in the general control of glucose and energy homeostasis. These include cells forming the hepatoportal vein glucose sensor, which controls glucose storage in the liver, counterregulation, food intake and glucose utilization by peripheral tissues and neurons in the hypothalamus and brainstem whose firing rates are modulated by local variations in glucose concentrations or, when not protected by a blood-brain barrier, directly by changes in blood glucose levels. These glucose-sensing neurons are involved in the control of insulin and glucagon secretion, food intake and energy expenditure. Here, recent physiological studies performed with GLUT2 -/- mice will be described, which indicate that this transporter is ess ential for glucose sensing by pancreatic &#103 -cells, by the hepatoportal sensor and by sensors, probably located centrally, which control activity of the autonomic nervous system and stimulate glucagon secretion. These studies may pave the way to a fine dissection of the molecular and cellular components of extra-pancreatic glucose sensors involved in the control of glucose and energy homeostasis.  相似文献   
7.
Summary Density-dependent regulation of cell growth in tissue culture is a well-known phenomenon but the mechanism of regulation remains obscure. Here we explore the effects of cell density and metabolite flux on the collective dynamics of a cell population. The intracellular dynamics are modelled by positive feedback kinetic mechanisms of the kind known to apply to yeast cells. Several experimental observations related to glycolytic oscillations are predicted and it is suggested that the general conclusions may be applicable in a broader context.  相似文献   
8.
An endogenous circadian rhythm of transpiration in Tamarix aphylla   总被引:1,自引:0,他引:1  
An endogenous circadian rhythm in the transpiration of Tamarix aphylla (L.) Karst. was found for plants grown in continuous light under laboratory conditions. The mean period (±SD) was 21.7±2.3 h (n = 121). No such rhythm was observed in continuous darkness, except for one small hump at the time of the first cycle. The influence of NaCl, Cd(NO3)2 and LiCi on the rhythmic behaviour of young T. aphylla plants was investigated. NaCl concentrations of up to 150 m M reduced the overall transpiration rates of the plants, but did not change the period of the rhythm. The amplitude and the mesor of the oscillations were inversely correlated with the NaCl concentration. A similar influence was found for Cd(NO3)2, but with concentrations that were approximately three orders of magnitude smaller than those of the NaCl treatments. The rhythmic behaviour of the plants was not altered by 10 m M LiCl. It is suggested that the described rhythm of transpiration may have a dual effect: (a) it might cause a partial closure of the stomates during midday hours and (b) it might serve as a possible synchronizer ("master clock") for other rhythmic phenomena in the plants.  相似文献   
9.
Summary Streptozotocin treatment at birth induces, in the pancreas of rats, first depletion of insulin and thyrotropin-releasing hormone and then early regeneration of cells and insulin, but not TRH. This study was undertaken to investigate whether the reduction in pancreatic TRH content can be associated with changes in the intensity and the distribution of TRH-immunoreactivity, and to follow the pattern of regeneration of cells through insulin- and TRH-immunoreactivity.In control animals, strong TRH-immunoreactivity was seen in insulin-containing cells on days 1–4 after birth. At day 7, the TRH-immunoreactivity was already decreased. In contrast, insulin-immunoreactivity was present throughout the neonatal period. A sparse population of cells near ducts also contained both TRH- and insulin-immunoreactivity at 1–2 days age.In streptozotocin-treated animals, TRH-immunoreactivity is found only in a few scattered insulin-containing cells in altered islets on days 1–4. Near the ducts, there were new insulin-containing cells which did not contain TRH. From day 7 regeneration of endocrine cells was characterized by new, typical islets, but these contained insulin-, but not TRH-immunoreactivity. These findings suggest a differential control of the biosynthesis of insulin and TRH within the pancreas.  相似文献   
10.
The low-energy orientational oscillations of the peptide groups of an -helix are considered and the value of the frequency is estimated to be in agreement with experiments. Approximate formulae are derived for the projection of a dipole moment on the helix axis and for the helix parameters. Within the framework of a three-chain model, the asymptotics of the soliton solution is obtained using a discrete approach.The analysis of -helix geometry exhibits two types of low-frequency oscillations of the -helix. The first one is connected with atom movements along the helix axis with the peptide groups twisting around the helix axis. Accordingly, it changes the hydrogen bond lengths between neighbouring peptide groups. In the second case, the slopes of the peptide groups to the helix axis oscillate without the helix parameters changing. Here, the energy of interactions between peptide-group dipoles is changed and, as a result, the oscillations have an optical nature. The frequency of the optical orientational oscillations is approximately 100 cm-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号