首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2021年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2004年   1篇
  1992年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
2.
3.
We are examining various plant-based systems to produce enzymes for the treatment of human lysosomal storage disorders. Constitutive expression of the gene encoding the human lysosomal enzyme, alpha-L-iduronidase (IDUA; EC 3.2.1.76) in leaves of transgenic tobacco plants resulted in low-enzyme activity, and the protein appeared to be subject to proteolysis. Toward enhancing production of this recombinant enzyme in vegetative tissues, transgenic tobacco plants were generated to co-express a CaMV35S:Chamaecyparis nootkatensis Abscisic Acid Insensitive3 (CnABI3) gene construct, along with the human gene construct. The latter contained regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene (5'-flanking, signal-peptide-encoding, and 3'-flanking regions). Ectopic synthesis of the CnABI3 protein led to the transactivation of the arcelin promoter and accordingly high activity (e.g., 25,000 pmol/min/mg total soluble protein) and levels of recombinant IDUA mRNA and protein were induced in leaves of transgenic tobacco, particularly in the presence of 150-200 microM S-(+)-ABA. Synthesis of human IDUA containing a carboxy-terminal ER retention (SEKDEL) sequence was also inducible by ABA in leaves co-transformed with the CnABI3 gene. As compared to the natural S-(+)-ABA, two persistent ABA analogues, (+)-8' acetylene ABA and (+)-8'methylene ABA, led to greater levels of beta-glucuronidase (GUS) reporter activities in leaves co-expressing the CnABI3 gene and a vicilin:GUS chimeric gene. In contrast, (+)-8' acetylene ABA and natural ABA appeared to be equally effective in stimulating the CnABI3-induced expression of an arcelin:GUS gene, and of the human IDUA gene, the latter also driven by arcelin-gene-regulatory sequences. Various stress-related treatments, particularly high concentrations of NaCl, had an even greater effect than ABA in promoting accumulation of human IDUA in co-transformed tobacco leaves. This strategy provides the means of enhancing the yields of recombinant proteins in transgenic plant vegetative tissues and potentially in cultured plant cells. The human recombinant protein can be readily induced in the presence of chemicals such as NaCl that can be added to cell cultures or even whole plants without a significant increase in production costs.  相似文献   
4.
5.
Cardiolipin (CL) is a mitochondrial anionic lipid that plays important roles in the regulation and signaling of mitochondrial apoptosis. CL peroxidation catalyzed by the assembly of CL-cytochrome c (cyt c) complexes at the inner mitochondrial membrane is a critical checkpoint. The structural changes in the protein, associated with peroxidase activation by CL and different anionic lipids, are not known at a molecular level. To better understand these peripheral protein-lipid interactions, we compare how phosphatidylglycerol (PG) and CL lipids trigger cyt c peroxidase activation, and correlate functional differences to structural and motional changes in membrane-associated cyt c. Structural and motional studies of the bound protein are enabled by magic angle spinning solid state NMR spectroscopy, while lipid peroxidase activity is assayed by mass spectrometry. PG binding results in a surface-bound state that preserves a nativelike fold, which nonetheless allows for significant peroxidase activity, though at a lower level than binding its native substrate CL. Lipid-specific differences in peroxidase activation are found to correlate to corresponding differences in lipid-induced protein mobility, affecting specific protein segments. The dynamics of omega loops C and D are upregulated by CL binding, in a way that is remarkably controlled by the protein:lipid stoichiometry. In contrast to complete chemical denaturation, membrane-induced protein destabilization reflects a destabilization of select cyt c foldons, while the energetically most stable helices are preserved. Our studies illuminate the interplay of protein and lipid dynamics in the creation of lipid peroxidase-active proteolipid complexes implicated in early stages of mitochondrial apoptosis.  相似文献   
6.
EJ Gleason  EM Kramer 《Gene》2012,507(1):54-60
Epigenetic regulation is important for maintaining gene expression patterns in multicellular organisms. The Polycomb Group (PcG) proteins form several complexes with important and deeply conserved epigenetic functions in both the plant and animal kingdoms. The plant Polycomb Repressive Complex 2 (PRC2) contains four core proteins, Enhancer of Zeste (E(z)), Suppressor of Zeste 12 (Su(z)12), Extra Sex Combs (ESC), and Multicopy Suppressor of IRA 1 (MSI1), and functions in many developmental transitions. In some plant species, including rice and Arabidopsis, duplications in the core PRC2 proteins allow the formation of PRC2s with distinct developmental functions. In addition, members of the plant specific VEL PHD family have been shown to associate with the PRC2 complex in Arabidopsis and may play a role in targeting the PRC2 to specific loci. Here we examine the evolution and expression of the PRC2 and VEL PHD families in Aquilegia, a member of the lower eudicot order Ranunculales and an emerging model for the investigation of plant ecology, evolution and developmental genetics. We find that Aquilegia has a relatively simple PRC2 with only one homolog of Su(z)12, ESC and MSI1 and two ancient copies of E(z), AqSWN and AqCLF. Aquilegia has four members of the VEL PHD family, three of which appear to be closely related to Arabidopsis proteins known to associate with the PRC2. The PRC2 and VEL PHD family proteins are expressed at a relatively constant level throughout Aquilegia vulgaris development, with the VEL PHD family and MSI1 expressed at higher levels during and after vernalization and in the inflorescence. Both AqSWN and AqCLF are expressed in Aquilegia endosperm but neither copy is imprinted.  相似文献   
7.
《Fly》2013,7(1):43-51
Chromatin immunoprecipitation (ChIP) is widely used for mapping DNA-protein interactions across eukaryotic genomes in cells, tissues or even whole organisms. Critical to this procedure is the efficient cross-linking of chromatin-associated proteins to DNA sequences that are in close proximity. Since the mid-nineties formaldehyde fixation has been the method of choice. However, some protein-DNA complexes cannot be successfully captured for ChIP using formaldehyde. One such formaldehyde refractory complex is the developmentally regulated insulator factor, Elba. Here we describe a new embryo fixation procedure using the bi-functional cross-linking reagents DSG (disuccinimidyl glutarate) and DSP (dithiobis[succinimidyl propionate). We show that unlike standard formaldehyde fixation protocols, it is possible to capture Elba association with insulator elements in 2–5 h embryos using this new cross-linking procedure. We show that this new cross-linking procedure can also be applied to localize nuclear proteins that are amenable to ChIP using standard formaldehyde cross-linking protocols, and that in the cases tested the enrichment was generally superior to that achieved using formaldehyde cross-linking.  相似文献   
8.
Wang Y  Liu C  Li K  Sun F  Hu H  Li X  Zhao Y  Han C  Zhang W  Duan Y  Liu M  Li X 《Plant molecular biology》2007,64(6):633-644
The nuclear protein ETHYLENE INSENSITIVE2 (EIN2) is a central component of the ethylene signal transduction pathway in plants, and plays an important role in mediating cross-links between several hormone response pathways, including abscisic acid (ABA). ABA mediates stress responses in plants, but there is no report on the role of EIN2 on plant response to salt and osmotic stresses. Here, we show that EIN2 gene regulates plant response to osmotic and salt stress through an ABA-dependent pathway in Arabidopsis. The expression of the EIN2 gene is down-regulated by salt and osmotic stress. An Arabidopsis EIN2 null mutant was supersensitive to both salt and osmotic stress conditions. Disruption of EIN2 specifically altered the expression pattern of stress marker gene RD29B in response to the stresses, but not the stress- or ABA-responsive genes RD29A and RD22, suggesting EIN2 modulates plant stress responses through the RD29B branch of the ABA response. Furthermore, disruption of EIN2 caused substantial increase in ABA. Lastly, our data showed that mutations of other key genes in ethylene pathway also had altered sensitivity to abiotic stresses, indicating that the intact ethylene may involve in the stress response. Taken together, the results identified EIN2 as a cross-link node in ethylene, ABA and stress signaling pathways, and EIN2 is necessary to induce developmental arrest during seed germination, and seedling establishment, as well as subsequent vegetative growth, thereby allowing the survival and growth of plants under the adverse environmental conditions. Youning Wang and Chuang Liu contributed equally to this work.  相似文献   
9.
The success of competitive interactions between plants determines the chance of survival of individuals and eventually of whole plant species. Shade-tolerant plants have adapted their photosynthesis to function optimally under low-light conditions. These plants are therefore capable of long-term survival under a canopy shade. In contrast, shade-avoiding plants adapt their growth to perceive maximum sunlight and therefore rapidly dominate gaps in a canopy. Daylight contains roughly equal proportions of red and far-red light, but within vegetation that ratio is lowered as a result of red absorption by photosynthetic pigments. This light quality change is perceived through the phytochrome system as an unambiguous signal of the proximity of neighbors resulting in a suite of developmental responses (termed the shade avoidance response) that, when successful, result in the overgrowth of those neighbors. Shoot elongation induced by low red/far-red light may confer high relative fitness in natural dense communities. However, since elongation is often achieved at the expense of leaf and root growth, shade avoidance may lead to reduction in crop plant productivity. Over the past decade, major progresses have been achieved in the understanding of the molecular basis of shade avoidance. However, uncovering the mechanisms underpinning plant response and adaptation to changes in the ratio of red to far-red light is key to design new strategies to precise modulate shade avoidance in time and space without impairing the overall crop ability to compete for light.  相似文献   
10.
Chromatin immunoprecipitation (ChIP) is widely used for mapping DNA-protein interactions across eukaryotic genomes in cells, tissues or even whole organisms. Critical to this procedure is the efficient cross-linking of chromatin-associated proteins to DNA sequences that are in close proximity. Since the mid-nineties formaldehyde fixation has been the method of choice. However, some protein-DNA complexes cannot be successfully captured for ChIP using formaldehyde. One such formaldehyde refractory complex is the developmentally regulated insulator factor, Elba. Here we describe a new embryo fixation procedure using the bi-functional cross-linking reagents DSG (disuccinimidyl glutarate) and DSP (dithiobis[succinimidyl propionate). We show that unlike standard formaldehyde fixation protocols, it is possible to capture Elba association with insulator elements in 2–5 h embryos using this new cross-linking procedure. We show that this new cross-linking procedure can also be applied to localize nuclear proteins that are amenable to ChIP using standard formaldehyde cross-linking protocols, and that in the cases tested the enrichment was generally superior to that achieved using formaldehyde cross-linking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号