首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   19篇
  国内免费   4篇
  2024年   1篇
  2023年   6篇
  2022年   5篇
  2021年   5篇
  2020年   9篇
  2019年   8篇
  2018年   8篇
  2017年   6篇
  2016年   7篇
  2015年   5篇
  2014年   10篇
  2013年   9篇
  2012年   6篇
  2011年   5篇
  2010年   2篇
  2009年   8篇
  2008年   9篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1992年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
1.
2.
This work reports synthesis of pH-responsive alginate/chitosan hydrogel spheres with the average diameter of 2.0 ± 0.05 mm, which contain cefotaxime that is an antibiotic of the cefalosporine group. The spheres provided the cefotaxime encapsulation efficiency of 95 ± 1%. An in vitro release of cefotaxime from the spheres in the media that simulate human biological fluids in peroral delivery conditions was found to be a pH-dependent process. The analysis of cefotaxime release kinetics by the Korsmeyer–Peppas model revealed a non-Fickian mechanism of its diffusion, which may be related to intermolecular interactions occurring between the antibiotic and chitosan. Conductometry, UV spectroscopy, and IR spectroscopy were used to study complexation of chitosan with cefotaxime in aqueous media with varied pH, characterize the composition of the complexes, and calculate their stability constants. The composition of the cefotaxime–chitosan complexes was found to correspond to the 1.0:4.0 and 1.0:2.0 molar ratios of the components at pH 2.0 and 5.6, respectively. Quantum chemical modeling was used to evaluate energy characteristics of chitosan–cefotaxime complexation considering the influence of a solvent.  相似文献   
3.
近年来,自组装多肽纳米技术因其可形成规则有序的结构、具有多样的功能而备受关注。研究发现自组装多肽能在特定的条件下形成具有确定结构的聚集体,这种聚集体具备生物相容性好、稳定性高等优点,表现出不同于单体多肽分子的特性和优势,因此其在药物传递、组织工程、抗菌等领域具有良好的应用前景。文中介绍了自组装多肽形成的分子机理、类型、影响因素,综述了自组装多肽形成的纤维肽基水凝胶与自组装抗菌肽的最新进展,并提出目前多肽自组装技术所存在的问题及展望。  相似文献   
4.
Complex tissue culture matrices, in which types and concentrations of biological stimuli (e.g. growth factors, inhibitors, or small molecules) or matrix structure (e.g. composition, concentration, or stiffness of the matrix) vary over space, would enable a wide range of investigations concerning how these variables affect cell differentiation, migration, and other phenomena. The major challenge in creating layered matrices is maintaining the structural integrity of layer interfaces without diffusion of individual components from each layer1. Current methodologies to achieve this include photopatterning2-3, lithography4, sequential functionalization5, freeze drying6, microfluidics7, or centrifugation8, many of which require sophisticated instrumentation and technical skills. Others rely on sequential attachment of individual layers, which may lead to delamination of layers9. DGMP overcomes these issues by using an inert density modifier such as iodixanol to create layers of varying densities10. Since the density modifier can be mixed with any prepolymer or bioactive molecule, DGMP allows each scaffold layer to be customized. Simply varying the concentration of the density modifier prevents mixing of adjacent layers while they remain aqueous. Subsequent single step polymerization gives rise to a structurally continuous multilayered scaffold, in which each layer has distinct chemical and mechanical properties. The density modifier can be easily removed with sufficient rinsing without perturbation of the individual layers or their components. This technique is therefore well suited for creating hydrogels of various sizes, shapes, and materials.A protocol for fabricating a 2D-polyethylene glycol (PEG) gel, in which alternating layers incorporate RGDS-350, is outlined below. We use PEG because it is biocompatible and inert. RGDS, a cell adhesion peptide11, is used to demonstrate spatial restriction of a biological cue, and the conjugation of a fluorophore (Alexa Fluor 350) enables us to visually distinguish various layers. This procedure can be adapted for other materials (e.g. collagen, hyaluronan, etc.) and can be extended to fabricate 3D gels with some modifications10.  相似文献   
5.
6.
7.
ABSTRACT

The mechanical and structural properties of the extracellular matrix (ECM) play an important role in regulating cell fate. The natural ECM has a complex fibrillar structure and shows nonlinear mechanical properties, which are both difficult to mimic synthetically. Therefore, systematically testing the influence of ECM properties on cellular behavior is very challenging. In this work we show two different approaches to tune the fibrillar structure and mechanical properties of fibrin hydrogels. Addition of extra thrombin before gelation increases the protein density within the fibrin fibers without significantly altering the mechanical properties of the resulting hydrogel. On the other hand, by forming a composite hydrogel with a synthetic biomimetic polyisocyanide network the protein density within the fibrin fibers decreases, and the mechanics of the composite material can be tuned by the PIC/fibrin mass ratio. The effect of the changes in gel structure and mechanics on cellular behavior are investigated, by studying human mesenchymal stem cell (hMSC) spreading and differentiation on these gels. We find that the trends observed in cell spreading and differentiation cannot be explained by the bulk mechanics of the gels, but correlate to the density of the fibrin fibers the gels are composed of. These findings strongly suggest that the microscopic properties of individual fibers in fibrous networks play an essential role in determining cell behavior.  相似文献   
8.
9.
Polysaccharides comprise an important class of natural polymers; they are abundant, diverse, polyfunctional, typically benign, and are biodegradable. Using polysaccharides to design in situ forming hydrogels is an attractive and important field of study since many polysaccharide-based hydrogels exhibit desirable characteristics including self-healing, responsiveness to environmental stimuli, and injectability. These characteristics are particularly useful for biomedical applications. This review will discuss recent discoveries in polysaccharide-based in situ forming hydrogels, including network architecture designs, curing mechanisms, physical and chemical properties, and potential applications.  相似文献   
10.
Self-assembling short peptides have attracted great interest as enzyme mimics, especially if the catalytic activity resides solely in the supramolecular structure so that it can be switched on/off as needed by controlling assembly/disassembly. Among the various enzyme classes, hydrolases find wide application in biomaterials, and their mimetics often contain His residues, in addition to either divalent cations or other amino acids to mimic the catalytic site. This work reports two self-assembling tetrapeptides based on the Ser-His motif for catalysis and the Phe-Phe motif to drive amyloid structure formation. Both peptides form thermoreversible hydrogels in phosphate buffer at neutral pH that display a mild esterase-like activity, as demonstrated on the hydrolysis of 4-nitrophenyl acetate as a model substrate, although presence of Ser did not enhance catalytic activity. The systems are characterised by circular dichroism, transmission electron microscopy, oscillatory rheology and Thioflavin T fluorescence as an amyloid stain, to provide further insights that may assist the future design of improved supramolecular catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号