首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6588篇
  免费   252篇
  国内免费   117篇
  2024年   5篇
  2023年   44篇
  2022年   70篇
  2021年   115篇
  2020年   95篇
  2019年   170篇
  2018年   169篇
  2017年   129篇
  2016年   125篇
  2015年   154篇
  2014年   268篇
  2013年   396篇
  2012年   231篇
  2011年   317篇
  2010年   171篇
  2009年   267篇
  2008年   328篇
  2007年   335篇
  2006年   310篇
  2005年   254篇
  2004年   255篇
  2003年   230篇
  2002年   208篇
  2001年   149篇
  2000年   153篇
  1999年   147篇
  1998年   141篇
  1997年   133篇
  1996年   135篇
  1995年   138篇
  1994年   133篇
  1993年   115篇
  1992年   117篇
  1991年   117篇
  1990年   111篇
  1989年   101篇
  1988年   86篇
  1987年   60篇
  1986年   79篇
  1985年   91篇
  1984年   80篇
  1983年   49篇
  1982年   46篇
  1981年   49篇
  1980年   24篇
  1979年   14篇
  1978年   16篇
  1977年   5篇
  1976年   9篇
  1971年   4篇
排序方式: 共有6957条查询结果,搜索用时 62 毫秒
1.
《Process Biochemistry》2014,49(12):2207-2213
Enhanced biological phosphorus removal (EBPR) technology has been widely considered as a key strategy in preventing eutrophication and recognized as the advancing front of research in wastewater treatment. The key to keep its high efficiency in biological phosphorus removal is to optimize the operation and management of the system. Previous research in this field has undoubtedly improved understanding of the factors hindered overall efficiency of EBPR. However, it is obvious that much remains to be learnt. This paper attempts to review the fundamental understanding in factors inhibiting the stability and reliability of the EBPR systems in the state-of-the-art research. In view of modeling the EBPR systems, an appropriate extension of the current mechanistic models with these inhibitory factors is recommended in order to better simulate and predict the behavior of full-scale and lab-scale EBPR plants. From the perspectives of the further mechanistic and multi-factors study, the direction of denitrifying dephosphatation and granules/biofilms are also discussed. This comprehensive overview will not only help us to understand the overall mechanism of the EBPR process, but also benefit the researchers and engineers to consider all the possible factors affecting the process in the urban sewage treatment plants.  相似文献   
2.
3.
Numerous data suggested that the pharmacological and biochemical properties of 5-hydroxytryptamine1A (5-HT1A) receptors exhibit some regional differences in the CNS, notably within the raphe nuclei compared with various forebrain areas (such as the hippocampus). This possibility has been further investigated in the dorsal raphe nucleus and two areas within the hippocampus, the dentate gyrus and the CA1 area, using the quantitative autoradiographic technique. The potencies of 5'-guanylylimidodiphosphate to inhibit the specific binding of 125I-Bolton-Hunter-8-methoxy-2-(N-propyl-N-propylamino)tetralin (125I-BH-8-MeO-N-PAT) to 5-HT1A sites and of N-ethylmaleimide to block these sites irreversibly were identical in the dorsal raphe nucleus and the hippocampal areas in rat brain sections. In contrast, slight but significant differences were noted in the pH dependence and pharmacological properties of 5-HT1A sites labeled by 125I-BH-8-MeO-N-PAT in these three regions. Similarly, heat denaturation experiments and tissue exposure to either phospholipase A2 or the alkylating agent 8-methoxy-2-(N-2'-chloropropyl,N-propyl)aminotetraline revealed regional differences in the properties of 5-HT1A sites. However, in most cases, the observed variations were of greater amplitude between the CA1 area and the dentate gyrus, where 5-HT1A sites are located postsynaptically, than between any one of these areas and the dorsal raphe nucleus where they act as (presynaptic) somatodendritic autoreceptors. These data further support that subtypes of 5-HT1A receptors probably exist in the rat brain, but this heterogeneity seems unrelated to the pre- or post-synaptic location of these receptors.  相似文献   
4.
《Developmental cell》2020,52(6):714-730.e5
  1. Download : Download high-res image (188KB)
  2. Download : Download full-size image
  相似文献   
5.
Great skepticism has surrounded the question of whether modulation of voltage-gated Ca2+ channels (VGCCs) by the polyunsaturated free fatty acid arachidonic acid (AA) has any physiological basis. Here we synthesize findings from studies of both native and recombinant channels where micromolar concentrations of AA consistently inhibit both native and recombinant activity by stabilizing VGCCs in one or more closed states. Structural requirements for these inhibitory actions include a chain length of at least 18 carbons and multiple double bonds located near the fatty acid's carboxy terminus. Acting at a second site, AA increases the rate of VGCC activation kinetics, and in CaV2.2 channels, increases current amplitude. We present evidence that phosphatidylinositol 4,5-bisphosphate (PIP2), a palmitoylated accessory subunit (β2a) of VGCCs and AA appear to have overlapping sites of action giving rise to complex channel behavior. Their actions converge in a physiologically relevant manner during muscarinic modulation of VGCCs. We speculate that M1 muscarinic receptors may stimulate multiple lipases to break down the PIP2 associated with VGCCs and leave PIP2's freed fatty acid tails bound to the channels to confer modulation. This unexpectedly simple scheme gives rise to unanticipated predictions and redirects thinking about lipid regulation of VGCCs.  相似文献   
6.
Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys2nd and Cys6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be applied in both health care and agricultural industries, and could lead to new methods for breeding fungus-resistant transgenic crops and antifungal transgenic silkworm strains.  相似文献   
7.
Bone morphogenetic protein 2 (BMP-2) has been known for decades as a strong osteoinductive factor and for clinical applications is combined solely with collagen as carrier material. The growing concerns regarding side effects and the importance of BMP-2 in several developmental and physiological processes have raised the need to improve the design of materials by controlling BMP-2 presentation. Inspired by the natural cell environment, new material surfaces have been engineered and tailored to provide both physical and chemical cues that regulate BMP-2 activity. Here we describe surfaces designed to present BMP-2 to cells in a spatially and temporally controlled manner. This is achieved by trapping BMP-2 using physicochemical interactions, either covalently grafted or combined with other extracellular matrix components. In the near future, we anticipate that material science and biology will integrate and further develop tools for in vitro studies and potentially bring some of them toward in vivo applications.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号