首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2018年   1篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The Gasdermin (GSDM) family consists of Gasdermin A (GSDMA), Gasdermin B (GSDMB), Gasdermin C (GSDMC), Gasdermin D (GSDMD), Gasdermin E (GSDME) and Pejvakin (PJVK). GSDMD is activated by inflammasome-associated inflammatory caspases. Cleavage of GSDMD by human or mouse caspase-1, human caspase-4, human caspase-5, and mouse caspase-11 liberates the N-terminal effector domain from the C-terminal inhibitory domain. The N-terminal domain oligomerizes in the cell membrane and forms a pore of 10–16?nm in diameter, through which substrates of a smaller diameter, such as interleukin-1β and interleukin-18, are secreted. The increasing abundance of membrane pores ultimately leads to membrane rupture and pyroptosis, releasing the entire cellular content. Other than GSDMD, the N-terminal domain of all GSDMs, with the exception of PJVK, have the ability to form pores. There is evidence to suggest that GSDMB and GSDME are cleaved by apoptotic caspases. Here, we review the mechanistic functions of GSDM proteins with respect to their expression and signaling profile in the cell, with more focused discussions on inflammasome activation and cell death.  相似文献   
2.
NLRP3 炎性小体是一种分子量约为700Kda 的大分子多蛋白复合体,能被多种病原相关的分子模式或损伤相关的分子模式 活化,对固有免疫系统免疫功能的发挥具有极其重要的作用。但如果其被过度激活则可通过活化的半胱天冬酶-1 持续地将 pro-IL-1茁和pro-IL-18 剪切为成熟的IL-1茁和IL-18,进而激活下游信号转导通路,产生大量的炎性介质,引起机体发生严重的炎 症反应,最终促进多种炎症性疾病的发生与发展,如Muckle-Wells综合征、2 型糖尿病、非酒精性脂肪肝、动脉粥样硬化、炎症性肠 病和阿尔兹海默病等。因此,对NLRP3 炎性小体进行深入的研究不仅有助于阐释固有免疫系统如何有效地发挥其免疫功能,而 且作为系列炎症反应的核心,NLRP3 炎性小体还可能成为多种炎症性疾病防治的新靶点。我们就NLRP3 炎性小体的结构与功 能,激活与调控,分布与疾病的近期研究作一综述。  相似文献   
3.
The NOD-like receptors NAIP5 and NLRC4 play an essential role in the innate immune response to the bacterial tail protein flagellin. Upon flagellin detection, NAIP5 and NLRC4 form a hetero-oligomeric inflammasome that induces caspase-1-dependent cell death. So far, both the mechanism of formation of the NAIP5-NLRC4 inflammasome and its structure are poorly understood. In this study we combine inflammasome reconstitution in HEK293 cells, purification of inflammasome components, and negative stain electron microscopy to address these issues. We find that a Salmonella typhimurium flagellin fragment comprising the D0 domain and the neighboring spoke region is able to co-precipitate NAIP5 and induce formation of the NAIP5-NLRC4 inflammasome. Comparison with smaller fragments indicates that flagellin recognition is mediated by its C-terminal residues as well as the spoke region. We reconstitute the inflammasome from purified flagellin, NAIP5, and NLRC4, thus proving that no other cellular components are required for its formation. Electron micrographs of the purified inflammasome provide unprecedented insight into its architecture, revealing disk-like complexes consisting of 11 or 12 protomers in which NAIP5 and NLRC4 appear to occupy equivalent positions. On the basis of our data, we propose a model for inflammasome formation wherein direct interaction of flagellin with a single NAIP5 induces the recruitment and progressive incorporation of NLRC4, resulting in the formation of a hetero-oligomeric inflammasome.  相似文献   
4.
Macrophages (Mϕ) are the major source of inflammatory cytokines and are target cells for dengue virus (DV) replication. However, Mϕ are heterogeneous and their phenotypic and functional diversities are influenced by cytokines that regulate their differentiation, tissue distribution, and defense against invading pathogens. In vitro, human primary macrophages are derived from peripheral blood CD14+ monocytes in the presence of macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulating factor (GM-CSF). These are essential for developing tissue/resting macrophages (M-Mϕ) and inflammatory macrophages (GM-Mϕ), respectively. While IFN production is similar between M-Mϕ and GM-Mϕ, M-Mϕ cannot produce IL-1β after DV infection. In contrast, GM-Mϕ is more susceptible to DV infection and DV triggers CLEC5A in GM-Mϕ to activate NLRP3 inflammasomes, which in turn release IL-18 and IL-1β that are critical for Th17 activation and contribute to disease severity. Thus, GM-Mϕ is more representative than M-Mϕ for investigating inflammasome activation in dengue infection, and is invaluable for revealing the molecular mechanism of pathogen-induced inflammatory reaction. Distinct phenotypes of macrophage subsets under the influence of M-CSF and GM-CSF raise the question of optimal conditions for culturing primary macrophages to study host-pathogen interaction.  相似文献   
5.
NLRP3炎性小体研究新进展   总被引:1,自引:0,他引:1  
张懿  刘磊  刘韵资  张婷  蒋春雷 《生物磁学》2014,(9):1763-1765,1743
NLRP3炎性小体是一种分子量约为700Kda的大分子多蛋白复合体,能被多种病原相关的分子模式或损伤相关的分子模式活化,对固有免疫系统免疫功能的发挥具有极其重要的作用。但如果其被过度激活则可通过活化的半胱天冬酶-1持续地将pro-IL-1β和pro-IL-18剪切为成熟的IL-1β和IL-18,进而激活下游信号转导通路,产生大量的炎性介质,引起机体发生严重的炎症反应,最终促进多种炎症性疾病的发生与发展,如Muckle—wells综合征、2型糖尿病、非酒精性脂肪肝、动脉粥样硬化、炎症性肠病和阿尔兹海默病等。因此,对NLRP3炎性小体进行深入的研究不仅有助于阐释固有免疫系统如何有效地发挥其免疫功能,而且作为系列炎症反应的核心,NLRP3炎性小体:还可能成为多种炎症性疾病防治的新靶点。我们就NLRP3炎性小体的结构与功能,激活与调控,分布与疾病的近期研究作一综:违。  相似文献   
6.
Innate pattern recognition receptors NLRs are cytosolic sensors that detect endogenous metabolic stress and form a multiprotein complex called the inflammasome, that recruits and activates caspase enzymes mediating the activation of the cytokines IL-1β and IL-18. The innate immune system and metabolic system are evolutionarily conserved, intimately integrated, and functionally dependent. In recent decades, obesity-associated metabolic diseases have been become a worldwide epidemic. Here we review recent evidence that demonstrates the important roles of NLRs and inflammasomes in response to metabolic stress in different tissues.  相似文献   
7.
Inflammasomes are a large family of multiprotein complexes recognizing pathogen-associated molecular pattern molecules (PAMPs) and damage-associated molecular patterns (DAMPs). This leads to caspase-1 activation, promoting the secretion of mature IL-1β, IL-18 and under certain conditions even induce pyroptosis. Inflammatory Bowel Diseases (IBD) is associated with alterations in microbiota composition, inappropriate immune responses and genetic predisposition associated to bacterial sensing and autophagy. Besides their acknowledged role in mounting microbial induced host responses, a crucial role in maintenance of intestinal homeostasis was revealed in inflammasome deficient mice. Further, abnormal activation of these functions appears to contribute to the pathology of intestinal inflammation including IBD and colitis-associated cancer. Herein, the current literature implicating the inflammasomes, microbiota and IBD is comprehensively reviewed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号