首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4052篇
  免费   208篇
  国内免费   368篇
  2023年   33篇
  2022年   73篇
  2021年   92篇
  2020年   86篇
  2019年   101篇
  2018年   96篇
  2017年   98篇
  2016年   109篇
  2015年   149篇
  2014年   176篇
  2013年   374篇
  2012年   141篇
  2011年   162篇
  2010年   150篇
  2009年   197篇
  2008年   246篇
  2007年   233篇
  2006年   198篇
  2005年   193篇
  2004年   211篇
  2003年   184篇
  2002年   165篇
  2001年   147篇
  2000年   136篇
  1999年   95篇
  1998年   102篇
  1997年   57篇
  1996年   63篇
  1995年   73篇
  1994年   47篇
  1993年   49篇
  1992年   63篇
  1991年   42篇
  1990年   23篇
  1989年   22篇
  1988年   22篇
  1987年   12篇
  1986年   13篇
  1985年   38篇
  1984年   30篇
  1983年   17篇
  1982年   29篇
  1981年   11篇
  1980年   7篇
  1979年   10篇
  1978年   7篇
  1977年   12篇
  1975年   8篇
  1974年   8篇
  1973年   7篇
排序方式: 共有4628条查询结果,搜索用时 15 毫秒
1.
Abstract A mutant strain of Schizosaccharomyces pombe lacking dipeptidyl aminopeptidase yspI was isolated from a strain already defective in aminopeptidase activity by means of a staining technique with the chromogenic substrate ala-pro-4-methoxy-β-naphthylamide to screen colonies for the absence of the enzyme. The defect segregated 2+ :2 in meiotic tetrads, indicating a single chromosomal gene mutation, which was shown to be recessive. Gene dosage experiments indicated that the mutation resides in the structural gene of dipeptidyl aminopeptidase yspI, dpa 1+. The dpa 1+ gene was located on chromosome III by using l m- fluorophen-ylalanine-induced haploidization and mitotic analysis. dpa1 mutants did not show any obvious phenotype under a variety of conditions tested.  相似文献   
2.
3.
  1. Download : Download high-res image (250KB)
  2. Download : Download full-size image
Highlights
  • •XL-MS reveals new PPIs in yeast mitochondria under glycerol and glucose condition.
  • •Significant but limited results from quantitative XL-MS experiments.
  • •Ndi1 participates in a CIII2CIV2 respiratory supercomplex.
  • •Min8 promotes assembly of Cox12 into an intermediate complex IV.
  相似文献   
4.
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12–Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12–Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113–131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64–99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.  相似文献   
5.
Water-insoluble compounds can be substrates for enzymatic reactions when lipases are immobilized properly and suitable organic solvents are used. In this review, three type of lipase immobilization method and their application to the asymmetric syntheses of complex molecules are described. Lipases immobilized with Celite or synthetic prepolymers such as urethane prepolymer and photo-crosslinkable resin prepolymer have been applied for the kinetic resolution of many kinds of water-insoluble substrate.

Phospholipid-lipase aggregates with ether linkages are novel and have been found to function effectively as immobilized lipases in asymmetric hydrolysis or esterification reactions in water-saturated organic solvent. The phospholipid-lipase aggregates are considered to have a stacked bilayer based on X-ray diffraction analysis structure of the lipid in the crystalline phase.  相似文献   
6.
Whole cells of Chlorella vulgaris and Clostridium butyricum were co-immobilized in 2% agar gel. NADP was suitable as an electron carrier. The rate of hydrogen evolution increased with increasing NADP concentration. The optimum conditions for hydrogen evolution were pH 7.0 and 37°C. The immobilized C. vulgaris-NADP-immobilized Cl. butyricum system continuously evolved hydrogen at a rate of 0.29–1.34 μmol/h per mg Chl for 6 days. On the other hand, the system without NADP evolved only a trace amount of hydrogen.  相似文献   
7.
8.
Microalgae-nitrifying bacteria consortia have gained attention because photooxygenation of algae can supply oxygen to bacteria which eliminates the need for costly mechanical aeration. However, nitrifying bacteria are known to suffer from photoinhibition. In this study, we developed “Light-shielding hydrogel”, in which bacteria were immobilized in hydrogel and light-shielding particles (carbon black) were incorporated, and evaluated its effectiveness to mitigate photoinhibition for bacteria under strong light irradiation. For comparison, “Hydrogel”, in which bacteria were immobilized in hydrogel without carbon black, and “Dispersion” which was simply suspended bacteria were prepared. At 1600 μmol photons m−2 s–1, the nitrification performance markedly decreased to 15.1 and 48.0% compared to the dark condition in the Dispersion and the Hydrogel, respectively. Meanwhile, it was successfully maintained for the Light-shielding hydrogel. Our results showed that the effectiveness of light-shielding hydrogel to mitigate photoinhibition on nitrifying bacteria even under strong light irradiation.  相似文献   
9.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   
10.
Distributions of rupture sites of fission yeast cells ruptured by glass beads have been related to a new morphometric analysis. As shown previously (Johnson et al.,Cell Biophysics, 1995), ruptures were not randomly distributed nor was their distribution dictated by geometry, rather, ruptures at the extensile end were related to cell length just as the rate of extension is related to cell length. The extension patterns of early log, mid-log, late log, and stationary phase cells from suspension cultures were found to approximate the linear growth patterns of Kubitschek and Clay (1986). The median length of cells was found to decline through the log phase in an unbalanced manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号