首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2019年   1篇
  2018年   1篇
  2011年   1篇
  2006年   1篇
  1988年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
The TAM kinase family arises as a new effective and attractive therapeutic target for cancer therapy, autoimmune and viral diseases. A series of 2,6-disubstituted imidazo[4,5-b]pyridines were designed, synthesized and identified as highly potent TAM inhibitors. Despite remarkable structural similarities within the TAM family, compounds 28 and 25 demonstrated high activity and selectivity in vitro against AXL and MER, with IC50 value of 0.77?nM and 9?nM respectively and a 120- to 900-fold selectivity. We also observed an unexpected nuclear localization for compound 10Bb, thanks to nanoSIMS technology, which could be correlated to the absence of cytotoxicity on three different cancer cell lines being sensitive to TAM inhibition.  相似文献   
2.
We report the synthesis and biological evaluation of 5-substituted indazoles as kinase inhibitors. The compounds were synthesized in a parallel synthesis fashion from readily available starting materials employing heterocycle forming and multicomponent reactions and were evaluated against a panel of kinase assays. Potent inhibitors were identified for Gsk3β, Rock2, and Egfr.  相似文献   
3.
4.
In vitro binding of the iodinated imidazopyridine, N',N'-dimethyl-6-methyl-(4'-[(123)I]iodophenyl)imidazo[1,2-a]pyridine-3-acetamide [(123)I]IZOL to benzodiazepine binding sites on brain cortex, adrenal and kidney membranes is reported. Saturation experiments showed that [(123)I]IZOL, bound to a single class of binding site (n(H)=0.99) on adrenal and kidney mitochondrial membranes with a moderate affinity (K(d)=30 nM). The density of binding sites was 22+/-6 and 1.2+/-0.4 pmol/mg protein on adrenal and kidney membranes, respectively. No specific binding was observed in mitochondrial-synaptosomal membranes of brain cortex. In biodistribution studies in rats, the highest uptake of [(123)I]IZOL was found 30 min post injection in adrenals (7.5% ID/g), followed by heart, kidney, lung (1% ID/g) and brain (0.12% ID/g), consistent with the distribution of peripheral benzodiazepine binding sites. Pre-administration of unlabelled IZOL and the specific PBBS drugs, PK 11195 and Ro 5-4864 significantly reduced the uptake of [(123)I]IZOL by 30% (p<0.05) in olfactory bulbs and by 51-86% (p<0.01) in kidney, lungs, heart and adrenals, while it increased by 30% to 50% (p<0.01) in the rest of the brain and the blood. Diazepam, a mixed CBR-PBBS drug, inhibited the uptake in kidney, lungs, heart, adrenals and olfactory bulbs by 32% to 44% (p<0.01) but with no effect on brain uptake and in blood concentration. Flumazenil, a central benzodiazepine drug and haloperidol (dopamine antagonist/sigma receptor drug) displayed no effect in [(123)I]IZOL in peripheral organs and in the brain. [(123)I]IZOL may deserve further development for imaging selectively peripheral benzodiazepine binding sites.  相似文献   
5.
The effect of omega (benzodiazepine)-receptor agonists, antagonists, and inverse agonists on the electrically evoked release of 5-[3H]hydroxytryptamine ([3H]5-HT) was studied in superfused slices of the rat frontal cerebral cortex. The electrically evoked release of [3H]5-HT was enhanced by nanomolar concentrations of diazepam and the selective omega 1-receptor agonists alpidem and CL 218872. The omega 1/omega 2- and omega 1-receptor antagonists flumazenil and CGS 8216, respectively, did not modify the electrically evoked release of [3H]5-HT. The omega 3-receptor agonist Ro 5-4864 and the omega 1-receptor inverse agonist ethyl-beta-carboline-3-carboxylate on their own did not affect the electrically evoked release of [3H]5-HT. On the other hand, the inverse agonist 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylic acid methyl ester (DMCM), at micromolar concentrations, inhibited both the spontaneous and the evoked release of [3H]5-HT. The facilitation of the electrically evoked release of [3H]5-HT by diazepam, alpidem, or CL 218872 was potentiated by gamma-aminobutyric acid (GABA). Exposure to flumazenil and CGS 8216 antagonized the facilitation by diazepam, alpidem, or CL 218872 of [3H]5-HT release. The inhibition of the release of [3H]5-HT by DMCM was not modified by exposure to either flumazenil, CGS 8216, or GABA. The inhibitory effect of DMCM was not observed when monoamine oxidase activity was inhibited by pargyline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号