首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   1篇
  2015年   1篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  1999年   1篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
2.
张勇  吴炜  孙勇  吕尚军  彭曦 《现代生物医学进展》2007,7(10):1484-1487,1516
目的:获得肠三叶因子(ITF)的原核表达产物及抗rITF抗体,为深入研究ITF的作用机制及其受体研究奠定基础。方法:常规提取人小肠组织总RNA,用RT-PCR获得ITF编码基因片段,克隆至质粒pET32a获得原核表达栽体,双酶切和测序后转化至Origami B(DE3)用IPTG诱导表达,优化条件获得最大表达产量;用SDS-PAGE、Western blot鉴定表达产物,亲和层析纯化获得的重组蛋白rITF皮下多点注射家兔,制备多克隆抗体,并用此抗体进行大鼠肠组织免疫组化研究。结果:测序证实PCR扩增获得ITF全长基因序列与基因文库中的完全一致,将该基因片段正确插入表达载体pET32a中、优化表达条件后,重组蛋白的表达量达到50mg/L;Western blot证明重组蛋白具有良好的抗原性和特异性;通过Ni-NTA亲和层析、超滤离心后,得到90%纯度的蛋白;收集兔血清,纯化后获得特异性良好的ITF抗体,免疫组化染色肠组织显示ITF表达的部位定位于杯状细胞。结论:成功构建了表达载体pET32a-ITF,在大肠杆菌中表达并纯化获得纯度较高的rITF,并获得了生物活性较高的ITF抗体,ITF主要在肠道杯状细胞分泌表达。  相似文献   
3.
肠三叶因子表达载体构建及在酵母菌GS115中的表达   总被引:2,自引:0,他引:2  
张勇  孙勇  吕尚军  吴炜  彭曦 《现代生物医学进展》2007,7(8):1124-1126,1141
目的:构建肠三叶因子(ITF)的真核表达载体,并在酵母菌GS115中表达,为进一步研究ITF的生理和药理功能奠定基础。方法:通过RT-PCR获得ITF cDNA片断,将目的基因插入pPICZαA酵母表达载体,得到重组载体pPICZαA-ITF。经BspHI线性化后氯化锂转化进入GS115,Zeocin筛选转化酵母菌,PCR鉴定目的基因。阳性转化子经摇瓶表达,取上清TCA沉淀后做Tricine SDS-PAGE分析及Western blot检测表达蛋白。结果:经测序及PCR证实ITF cDNA准确插入酵母表达载体pPICZαA中。Tricille SDS-PAGE分析证明ITF的分子量约为14×10~3,表达蛋白具有良好的抗原性和特异性。结论:成功构建了真核表达载体pPICZαA-ITF,在酵母菌GS115中表达,获得重组ITF蛋白。  相似文献   
4.
Several cell types are present in the intestinal epithelium that likely arise from a common precursor, the stem cell, and each mature cell type expresses a unique set of genes that characterizes its functional phenotype. Although the process of differentiation is intimately linked to the cessation of proliferation, the mechanisms that dictate intestinal cell fate determination are not well characterized. To investigate the reprogramming of gene expression during the cell lineage allocation/differentiation process, we took advantage of a unique system of two clonal derivatives of HT29 cells, Cl16E and Cl19A cells, which spontaneously differentiate as mucus producing goblet and chloride-secreting cells, respectively, as a function of time. By profiling gene expression, we found that these two cell lines show remarkably similar kinetics of change in gene expression and common clusters of coordinately regulated genes. This demonstrates that lineage-specific differentiation of intestinal epithelial cells is characterized overall by the sequential recruitment of functionally similar gene sets independent of the final phenotype of the mature cells.  相似文献   
5.
ITF2357 (generic givinostat) is an orally active, hydroxamic-containing histone deacetylase (HDAC) inhibitor with broad anti-inflammatory properties, which has been used to treat children with systemic juvenile idiopathic arthritis. ITF2357 inhibits both Class I and II HDACs and reduces caspase-1 activity in human peripheral blood mononuclear cells and the secretion of IL-1β and other cytokines at 25–100 nm; at concentrations >200 nm, ITF2357 is toxic in vitro. ITF3056, an analog of ITF2357, inhibits only HDAC8 (IC50 of 285 nm). Here we compared the production of IL-1β, IL-1α, TNFα, and IL-6 by ITF2357 with that of ITF3056 in peripheral blood mononuclear cells stimulated with lipopolysaccharide (LPS), heat-killed Candida albicans, or anti-CD3/anti-CD28 antibodies. ITF3056 reduced LPS-induced cytokines from 100 to 1000 nm; at 1000 nm, the secretion of IL-1β was reduced by 76%, secretion of TNFα was reduced by 88%, and secretion of IL-6 was reduced by 61%. The intracellular levels of IL-1α were 30% lower. There was no evidence of cell toxicity at ITF3056 concentrations of 100–1000 nm. Gene expression of TNFα was markedly reduced (80%), whereas IL-6 gene expression was 40% lower. Although anti-CD3/28 and Candida stimulation of IL-1β and TNFα was modestly reduced, IFNγ production was 75% lower. Mechanistically, ITF3056 reduced the secretion of processed IL-1β independent of inhibition of caspase-1 activity; however, synthesis of the IL-1β precursor was reduced by 40% without significant decrease in IL-1β mRNA levels. In mice, ITF3056 reduced LPS-induced serum TNFα by 85% and reduced IL-1β by 88%. These data suggest that specific inhibition of HDAC8 results in reduced inflammation without cell toxicity.  相似文献   
6.
Different from some more specialised short reviews, here a general although not encyclopaedic survey of the function, metabolic role, structure and mechanism of the ADP/ATP transport in mitochondria is presented. The obvious need for an “old fashioned” review comes from the gateway role in metabolism of the ATP transfer to the cytosol from mitochondria. Amidst the labours, 40 or more years ago, of unravelling the role of mitochondrial compartments and of the two membranes, the sequence of steps of how ATP arrives in the cytosol became a major issue. When the dust settled, a picture emerged where ATP is exported across the inner membrane in a 1:1 exchange against ADP and where the selection of ATP versus ADP is controlled by the high membrane potential at the inner membrane, thus uplifting the free energy of ATP in the cytosol over the mitochondrial matrix. Thus the disparate energy and redox states of the two major compartments are bridged by two membrane potential responsive carriers to enable their symbiosis in the eukaryotic cell. The advance to the molecular level by studying the binding of nucleotides and inhibitors was facilitated by the high level of carrier (AAC) binding sites in the mitochondrial membrane. A striking flexibility of nucleotide binding uncovered the reorientation of carrier sites between outer and inner face, assisted by the side specific high affinity inhibitors. The evidence of a single carrier site versus separate sites for substrate and inhibitors was expounded. In an ideal setting principles of transport catalysis were elucidated. The isolation of intact AAC as a first for any transporter enabled the reconstitution of transport for unravelling, independently of mitochondrial complications, the factors controlling the ADP/ATP exchange. Electrical currents measured with the reconstituted AAC demonstrated electrogenic translocation and charge shift of reorienting carrier sites. Aberrant or vital para-functions of AAC in basal uncoupling and in the mitochondrial pore transition were demonstrated in mitochondria and by patch clamp with reconstituted AAC. The first amino acid sequence of AAC and of any eukaryotic carrier furnished a 6-transmembrane helix folding model, and was the basis for mapping the structure by access studies with various probes, and for demonstrating the strong conformation changes demanded by the reorientation mechanism. Mutations served to elucidate the function of residues, including the particular sensitivity of ATP versus ADP transport to deletion of critical positive charge in AAC. After resisting for decades, at last the atomic crystal structure of the stabilised CAT-AAC complex emerged supporting the predicted principle fold of the AAC but showing unexpected features relevant to mechanism. Being a snapshot of an extreme abortive “c-state” the actual mechanism still remains a conjecture.  相似文献   
7.
酵母表达的重组人小肠三叶因子(rh-ITF)飞行质谱测定二聚体的分子量为13154,等电点约为4.5~4.75.紫外和荧光光谱表明rh-ITF在pH2.7~8.4和pH2.7~7.7时,吸收值增加。随pH进一步增加,吸收值降低。推测色氨酸和酪氨酸所处微环境发生了一定的变化。园二色谱表明在不同pH下,rh-ITF所含二级结构百分数有所变化,但仍保留有一定的二级结构,即含有一定数量的α-helix,β-sheet或β-turn,其三级结构基本不变。光电滴定和有机溶剂微扰法表明rh-ITF分子中有两个酪氨酸,一个处于分子表面,另一个参与氢键的形成或存在于一个非极性的环境中。rh-ITF中的色氨酸处于分子内部。另外,质谱测定rh-ITF在体外对酸和蛋白酶有一定的抗性  相似文献   
8.
9.
Trefoil factor 3 (TFF3) is a member of the TFF-domain peptide family and essential in regulating cell migration and maintaining mucosal integrity in gastrointestinal tract. However, the role of TFF3 and its downstream regulating mechanisms in cancer cell migration remain unclear. We previously reported that TFF3 prolonged the up-regulation of Twist protein to modulate IL-8 secretion in intestinal epithelial cells. In this study, we investigated the role of Twist protein in TFF3-induced migration of SGC7901 cells. While Twist was activated by TFF3, siRNA-mediated knockdown of Twist abolished TFF3-induced cell migration. Furthermore, the migration related marker CK-8 as well as ZO-1 and MMP-9 was also regulated by TFF3 via a Twist-dependent mechanism. Our study suggests that Twist, as an important potential downstream effector, plays a key role in TFF3-modulated metastasis in gastric cancer and can be a promising therapeutic target against intestinal-type gastric cancer.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号