首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  国内免费   4篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2014年   3篇
  2010年   2篇
  2003年   1篇
  1999年   1篇
  1994年   1篇
排序方式: 共有17条查询结果,搜索用时 109 毫秒
1.
《Cell》2022,185(11):1924-1942.e23
  1. Download : Download high-res image (252KB)
  2. Download : Download full-size image
  相似文献   
2.
We found the 2′,5′-oligoadenylate synthetase-like (OASL) gene to be significantly elevated by high virus loads in human liver infected with hepatitis C virus (HCV). Here, we determined whether OASL inhibited HCV replication using an in vitro system. We constructed three expression vectors of OASL to produce isoform a (OASLa), isoform b (OASLb), and the C-terminal ubiquitin-like domain of isoform a (Ub). When Huh7 JFH-1 HCV replicon cells were separately transfected with these three vectors, colony formation of HCV-replicating cells was inhibited by 95%, 94%, and 65%, respectively. Both OASLa and OASLb were also inhibitory for cells as well as the virus because colony formation of OASL-producing cells was reduced to 41% and 8%, respectively. Stable Huh7 clones producing each of the three OASLs were established and assessed for their inhibition of HCV replication using luciferase reporter gene-containing JFH-1 replicon RNA. HCV replication was inhibited by 50-90% in several stable OASL clones. Association analysis in six Ub clones expressing different levels of Ub mRNA showed that the degree of inhibition of HCV replication was significantly associated with the amount of Ub present. In conclusion, OASL possesses two domains with HCV inhibitory activity. The N-terminal OAS-homology domain without OAS activity is inhibitory for cell growth as well as HCV replication, whereas C-terminal Ub is inhibitory only for HCV replication. Therefore, OASLa, a major isoform of this molecule induced in human liver, may mediate anti-HCV activity through two different domains.  相似文献   
3.
4.
Interferons (IFNs) are the first line of defense against viral infections in vertebrates. Type III interferon (IFN-λ) is recognized for its key role in innate immunity of tissues of epithelial origin. Here we describe the identification of the Pekin duck IFN-λ ortholog (duIFN-λ). The predicted duIFN-λ protein has an amino acid identity of 63%, 38%, 37% and 33% with chicken IFN-λ and human IFN-λ3, IFN-λ2 and IFN-λ1, respectively. The duck genome contains a single IFN-λ gene that is comprised of five exons and four introns. Recombinant duIFN-λ up-regulated OASL and Mx-1 mRNA in primary duck hepatocytes. Our observations suggest evolutionary conservation of genomic organization and structural features implicated in receptor binding and antiviral activity. The identification and expression of duIFN-λ will facilitate further study of the role of type III IFN in antiviral defense and inflammatory responses of the Pekin duck, a non-mammalian vertebrate and pathogen host with relevance for human and animal health.  相似文献   
5.
Exposure of cells to type I interferon (IFN) induces an antiviral state that prevents viral infection, but viruses can utilize multiple tactics to antagonize the host immune system. Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are two major pathogens that cause hand, foot, and mouth disease (HFMD), which is prevalent among children. We found that both EV71 and CA16 have different reactions to type I IFN pretreatment and induction patterns of type I IFN on Rhabdomyosarcoma (RD) cells. Further, a human-α and β IFN PCR array was employed to analyze the expressions of 84 genes related to the type I IFN pathway. We found significant up-regulation of multiple genes in the presence of type I IFN and differential regulation patterns during EV71 or CA16 infection in RD cells. For instance, EV71 infection repressed the JAK-STAT signaling pathway and interferon-stimulated gene (ISG) expression, whereas CA16 infection normally triggers the JAK-STAT pathway, leading to the expression of ISGs. Taken together, this study provides a comprehensive view of the differential impacts of EV71 and CA16 infection on 84 genes in the IFN pathway, shedding light on the different resistances of these viruses to type I IFN treatment and cytotoxic effects in RD cells.  相似文献   
6.
Autophagy refers to the conserved, multi-step mechanism that delivers cytosolic cargoes to vesicles of the endo-lysosomal system for degradation. It maintains cellular homeostasis by ensuring the continuous degradation of misformed/senescent intracellular components and the associated recycling of nutrients. Autophagy also represents an important cell-intrinsic defense mechanism against invasion by intracellular pathogens, including viruses. Autophagy might oppose viral invasion by targeting viral particles or viral components for degradation. It can also promote the interaction of viral constituents with receptors specialized in the activation of innate immunity pathways or facilitate the activation of anti-viral adaptive immunity. In response to such pressures, viruses have evolved various sophisticated strategies to avoid anti-viral autophagic responses or to manipulate the autophagic machinery to promote their own replication. This review focuses on our current knowledge of autophagy-related events that take place at early stages during interaction of viruses with host cells as well as on their associated consequences in terms of virus replication and cell fate.  相似文献   
7.
干扰素刺激基因(ISGs)是干扰素作用机制研究的核心内容.干扰素与受体结合后,通过细胞内信号转换,激活胞浆转录调控因子与ISGs调控序列上的cis元件结合而诱导基因表达.  相似文献   
8.
Wang  Miao  Wang  Liying  Liu  Haizhou  Chen  Jianjun  Liu  Di 《中国病毒学》2021,36(6):1315-1326
Virologica Sinica - Human endogenous retroviruses (HERVs) are the remains of ancient retroviruses that invaded our ancestors’ germline cell and were integrated into the genome. The expression...  相似文献   
9.
IFNs are a family of cytokines with pleiotropic biological effects mediated by scores of responsive genes. IFNs were the first human proteins to be effective in cancer therapy and were among the first recombinant DNA products to be used clinically. Both quality and quantity of life has been improved in response to IFNs in various malignancies. Despite its beneficial effects, unraveling the mechanisms of the anti-tumor effects of IFN has proven to be a complex task. IFNs may mediate anti-tumor effects either indirectly by modulating immunomodulatory and anti-angiogenic responses or by directly affecting proliferation or cellular differentiation of tumor cells. Both direct or indirect effects of IFNs result from induction of a subset of genes, called IFN stimulated genes (ISGs). In addition to the ISGs implicated in anti-viral, anti-angiogenic, immunomodulatory and cell cycle inhibitory effects, oligonucleotide microarray studies have identified ISGs with apoptotic functions. These include TNF- related apoptosis inducing ligand (TRAIL/Apo2L), Fas/FasL, XIAP associated factor-1 (XAF-1), caspase-4, caspase-8, dsRNA activated protein kinase (PKR), 2'5'A oligoadenylate synthetase (OAS), death activating protein kinases (DAP kinase), phospholipid scramblase, galectin 9, IFN regulatory factors (IRFs), promyelocytic leukemia gene (PML) and regulators of IFN induced death (RIDs). In vitro IFN-, IFN- and IFN- induced apoptosis in multiple cell lines of varied histologies. This review will emphasize possible mechanisms and the role of ISGs involved in mediating apoptotic function of IFNs.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号