首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   2篇
  2024年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   6篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2004年   2篇
  2003年   2篇
  2000年   2篇
排序方式: 共有49条查询结果,搜索用时 31 毫秒
1.
ObjectiveMounting evidence demonstrates that long non-coding RNA (lncRNA) is dysregulated in breast cancers. This study was designed to detect the influences and regulatory mechanism of lncRNA PDCD4-AS1 in triple-negative breast cancer (TNBC).MethodsqRT-PCR and Western blot were utilized to investigate the expression levels of PDCD4-AS1, miR-10b-5p and IQGAP2 in TNBC tissues and cells. Online software and luciferase reporter gene system were employed to testify the interactions among these molecules. Loss and gain of function of PDCD4-AS1, miR-10b-5p or IQGAP2 were performed before MTT and colony formation assay, TUNEL staining in addition to Transwell and scratch assays were applied to measure the cell biological functions.ResultsIn this work, PDCD4-AS1 and IQGAP2 were lowly expressed while miR-10b-5p was strongly expressed in TNBC tissues and cells. PDCD4-AS1 or IQGAP2 overexpression effectively attenuated TNBC cell proliferation, migration and invasion, and increased the apoptosis rate, while this effect was abandoned in response to miR-10b-5p mimics transfection. miR-10b-5p bound to IQGAP2 and acted as a downstream target of PDCD4-AS1.ConclusionOur findings identified lncRNA PDCD4-AS1 as a tumor suppressor in TNBC by regulating IQGAP2 expression via miR-10b-5p, giving a novel insight into the regulatory mechanism of PDCD4-AS1 in the pathogenesis of TNBC.  相似文献   
2.
Triple-negative breast cancer (TNBC) represents an aggressive subtype, for which radiation and chemotherapy are the only options. Here we describe the identification of disulfiram, an FDA-approved drug used to treat alcoholism, as well as the related compound thiram, as the most potent growth inhibitors following high-throughput screens of 3185 compounds against multiple TNBC cell lines. The average IC50 for disulfiram was ~300 nM. Drug affinity responsive target stability (DARTS) analysis identified IQ motif-containing factors IQGAP1 and MYH9 as direct binding targets of disulfiram. Indeed, knockdown of these factors reduced, though did not completely abolish, cell growth. Combination treatment with 4 different drugs commonly used to treat TNBC revealed that disulfiram synergizes most effectively with doxorubicin to inhibit cell growth of TNBC cells. Disulfiram and doxorubicin cooperated to induce cell death as well as cellular senescence, and targeted the ESA+/CD24-/low/CD44+ cancer stem cell population. Our results suggest that disulfiram may be repurposed to treat TNBC in combination with doxorubicin.  相似文献   
3.
The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects.  相似文献   
4.
Adaptor proteins respond to stimuli and recruit downstream complexes using interactions conferred by associated protein domains and linear motifs. The ShcA adaptor contains two phosphotyrosine recognition modules responsible for binding activated receptors, resulting in the subsequent recruitment of Grb2 and activation of Ras/MAPK. However, there is evidence that Grb2‐independent signalling from ShcA has an important role in development. Using mass spectrometry, we identified the multidomain scaffold IQGAP1 as a ShcA‐interacting protein. IQGAP1 and ShcA co‐precipitate and are co‐recruited to membrane ruffles induced by activated receptors of the ErbB family, and a reduction in ShcA protein levels inhibits the formation of lamellipodia. We used NMR to characterize a direct, non‐canonical ShcA PTB domain interaction with a helical fragment from the IQGAP1 N‐terminal region that is pTyr‐independent. This interaction is mutually exclusive with binding to a more conventional PTB domain peptide ligand from PTP–PEST. ShcA‐mediated recruitment of IQGAP1 may have an important role in cytoskeletal reorganization downstream of activated receptors at the cell surface.  相似文献   
5.
Mast cells reorganize their actin cytoskeleton in response to cytosolic calcium signals while in parallel secreting histamine and other inflammatory mediators. The effect of calcium on actin is mediated in large part through calmodulin. EGFP-tagged calmodulin is concentrated in the actin-rich cortex of RBL-2H3 mast cells. Transfection with small interfering RNA directed against the actin and calmodulin-binding protein IQGAP1 dramatically reduced expression of the latter protein and reduced or eliminated the concentration of calmodulin at the actin-rich cortex. Both actin reorganization and secretion were enhanced in IQGAP1 knockdown cells. Our results suggest a model in which calmodulin is targeted to and sequestered at the actin cytoskeleton by IQGAP1. Upon cell stimulation and the subsequent [Ca2+]i increase, it is immediately available to activate local downstream targets.  相似文献   
6.
Get to grips: steering local actin dynamics with IQGAPs   总被引:1,自引:0,他引:1  
Brandt DT  Grosse R 《EMBO reports》2007,8(11):1019-1023
IQGAPs are actin-binding proteins that scaffold numerous interaction partners, transmitting extracellular signals that influence mitogenic, morphological and migratory cell behaviour. However, the precise mechanisms by which IQGAP proteins influence actin dynamics and actin filament structures have been elusive. Now that IQGAP1 has emerged as a potential key regulator of actin-cytoskeletal dynamics by recruiting both the actin related protein (Arp)2/3 complex and/or formin-dependent actin polymerizing machineries, we propose that IQGAP1 might coordinate the function of mechanistically different actin nucleators for cooperative localized actin filament production in various cellular processes.  相似文献   
7.
IQGAP1 regulates cytoskeletal dynamics through interactions with the Rho family GTPases Rac1 and Cdc42, F-actin, and beta-catenin. Calmodulin interaction with IQ motifs of IQGAP1 negatively influences these IQGAP1 interactions. Although, calmodulin interacts with IQGAP1 in the absence of Ca(2+) and was suggested to exhibit reduced binding when Ca(2+) bound, recent reports show substantially greater binding when Ca(2+) is present. Binding evaluations have primarily relied on IQGAP1 interaction with calmodulin conjugated to Sepharose 4B. In this study we evaluated the Ca(2+)-dependence of calmodulin interaction with native IQGAP1 using a series of independent biochemical approaches. We found the apparent binding of calmodulin to IQGAP1 was Ca(2+)-independent, being between 5- and 20-fold greater in the absence than in the presence of Ca(2+). In addition, calmodulin interaction with IQGAP1 was negatively regulated by buffer [Ca(2+)] (IC(50)=3.4x10(-7)M). Regulation was specific to Ca(2+), as Ba(2+) was approximately 400-fold less effective than Ca(2+) at modulating the interaction. Moreover, testing of calmodulin mutants demonstrated that apocalmodulin tightly binds IQGAP1 and that the N- and C-terminal pair of EF hands are important for Ca(2+) sensitivity. These data indicate that calmodulin may disassemble from IQGAP1 to facilitate IQGAP1 interaction with effectors of cytoskeletal reorganization during conditions of cell activation that promote increased cytosolic [Ca(2+)].  相似文献   
8.
IQGAP1 is a key mediator of several distinct cellular processes, in particular cytoskeletal rearrangements. Recent studies have implicated a potential role for IQGAP1 in cancer, supported by the over-expression and distinct membrane localisation of IQGAP1 observed in a range of tumours. IQGAP1 is thought to contribute to the transformed cancer cell phenotype by regulating signalling pathways involved in cell proliferation and transformation, weakening of cell:cell adhesion contacts and stimulation of cell motility and invasion. In this review we discuss these different functional and regulatory roles of IQGAP1 and its homologues in relation to their potential impact on tumourigenesis.  相似文献   
9.
SMG-9 is a component of the NMD complex, a heterotetramer that also includes SMG-1 and SMG-8 in the complex. SMG-9 was also originally identified as a tyrosine-phosphorylated protein but the role of the phosphorylation is not yet known. In this study, we determined that IQGAP protein, an actin cytoskeleton modifier acts as a binding partner with SMG-9 and this binding is regulated by phosphorylation of SMG-9 at Tyr-41. SMG-9 is co-localized with IQGAP1 as a part of the process of actin enrichment in non-stimulated cells, but not in the EGF-stimulated cells. Furthermore, an increase in the ability of SMG-9 to bind to SMG-8 occurs in response to EGF stimulation. These results suggest that tyrosine phosphorylation of SMG-9 may play a role in the formation of the NMD complex in the cells stimulated by the growth factor.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号