首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  2023年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2011年   1篇
  2008年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1992年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Changsung Kim 《BMB reports》2015,48(5):256-265
Cardiovascular and neurodegenerative diseases are major health threats in many developed countries. Recently, target tissues derived from human embryonic stem (hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes (CMs) or neurons, have been actively mobilized for drug screening. Knowledge of drug toxicity and efficacy obtained using stem cell-derived tissues could parallel that obtained from human trials. Furthermore, iPSC disease models could be advantageous in the development of personalized medicine in various parts of disease sectors. To obtain the maximum benefit from iPSCs in disease modeling, researchers are now focusing on aging, maturation, and metabolism to recapitulate the pathological features seen in patients. Compared to pediatric disease modeling, adult-onset disease modeling with iPSCs requires proper maturation for full manifestation of pathological features. Herein, the success of iPSC technology, focusing on patient-specific drug treatment, maturation-based disease modeling, and alternative approaches to compensate for the current limitations of patient iPSC modeling, will be further discussed. [BMB Reports 2015; 48(5): 256-265]  相似文献   
2.
Networks of cortical neurons in vitro spontaneously develop synchronous oscillatory electrical activity at around the second week in culture. However, the underlying mechanisms and in particular the role of GABAergic interneurons in initiation and synchronization of oscillatory activity in developing cortical networks remain elusive. Here, we examined the intrinsic properties and the development of GABAergic and glutamatergic input onto presumed projection neurons (PNs) and large interneurons (L-INs) in cortical cultures of GAD67-GFP mice. Cultures developed spontaneous synchronous activity already at 5-7 days in vitro (DIV), as revealed by imaging transient changes in Fluo-3 fluorescence. Concurrently, spontaneous glutamate-mediated and GABA(A)-mediated postsynaptic currents (sPSCs) occured at 5 DIV. For both types of neurons the frequency of glutamatergic and GABAergic sPSCs increased with DIV, whereas the charge transfer of glutamatergic sPSCs increased and the charge transfer of GABAergic sPSCs decreased with cultivation time. The ratio between GABAergic and the overall charge transfer was significantly reduced with DIV for L-INs and PNs, indicating an overall reduction in GABAergic synaptic drive with maturation of the network. In contrast, analysis of miniature PSCs (mPSCs) revealed no significant changes of charge transfer with DIV for both types of neurons, indicating that the reduction in GABAergic drive was not due to a decreased number of functional synapses. Our data suggest that the global reduction in GABAergic synaptic drive together with more synaptic input to PNs and L-INs during maturation may enhance rhythmogenesis of the network and increase the synchronization at the level of population bursts.  相似文献   
3.
Development of inhibitory synaptic transmission was studied using a dissociated cell culture from the superior colliculus of neonatal rat. Patch-clamp recordings in the whole-cell configuration were performed to measure evoked (single-cell-activated) inhibitory postsynaptic currents (IPSCs), miniature IPSCs and current responses to maximal concentrations of exogenous γ-aminobutyric acid (GABA). Over a period of 3 weeks in vitro (DIV3-24), the fraction of synaptically coupled neurons raised from 0% to 76%. Evoked IPSCs were first observed at DIV5. They had an average amplitude of 33.9 pA during the first week (n = 13) and 129.7 pA during the fourth week (n = 48). This increase by a factor of 3.8 represents a significant rise in the efficacy of GABAergic transmission during in vitro development. However, no developmental change has been observed in the average amplitudes of miniature somatic IPSCs. The latter remained at an average level of about 9 pA (symmetrical chloride concentration and a driving force of 68 mV). No increase was found also in whole-cell current densities induced by saturating concentrations of exogenous GABA. Our results suggest that under the given conditions, synapse maturation was primarily the result of presynaptic sprouting. This conclusion is further supported by bouton counts in immunostained collicular cultures, where the number of axosomatic and axodendritic GABAergic contacts per neuron increased from 0.54 and 0.37, respectively, at DIV3, to 13.84 and >23.1, at DIV24. The overall density of GABAergic neurons decreased during this period from about 41,000/cm2 to 15,600 cm2, indicating that a growing number of contacts is formed by a declining number of presynaptic neurons. © 1992 John Wiley & Sons, Inc.  相似文献   
4.
吗啡对大鼠海马神经元突触传递的作用及机制探讨   总被引:1,自引:0,他引:1  
目的 :从离子通道角度研究吗啡对中枢神经系统兴奋性及抑制性突触传递的作用并探讨其机制。方法 : 原代培养新生Wistar大鼠的海马神经元。采用膜片钳技术研究吗啡对其兴奋性及抑制性突触后电流及谷氨酸诱发电流的影响。结果 :①吗啡可明显增强海马神经元兴奋性突触传递 ,加吗啡后自发兴奋性突触后电流 (sEPSC)的发放频率增加了 ( 2 0 7.8± 2 0 .9) %。此作用可被阿片受体阻断剂纳洛酮阻断 (P <0 .0 1) ;②吗啡对微小兴奋性突触后电流 (mEPSC)的发放频率及谷氨酸诱发电流的幅度没有明显影响 (P >0 .0 5 ) ;③吗啡可明显抑制神经元自发抑制性突触后电流 (sIPSC) ,纳洛酮可拮抗吗啡作用 (n =13 ,P <0 .0 1)。结论 :实验结果提示吗啡对海马神经元的兴奋作用不是由于吗啡直接作用于兴奋性氨基酸—谷氨酸突触传递过程 ,而是可能由于抑制了抑制性中间神经元 ,间接产生的兴奋作用。  相似文献   
5.
Glyvuk  N. V.  Storozhuk  M. V. 《Neurophysiology》2002,34(2-3):135-137
-Latrotoxin, an active component of black widow spider venom, is known to enhance spontaneous neurotransmitter release. In cultured rat hippocampal neurons, we studied the effects of latrotoxin-like protein (protein purified from the bovine brain and exhibiting some functional properties similar to those of -latrotoxin) on spontaneous GABA-ergic inhibitory currents (IPSC). Latrotoxin-like protein was found to dramatically increase the frequency of spontaneous IPSC recorded in cell cultures of dissociated hippocampal neurons in the presence of tetrodotoxin. Possible mechanisms of the action of latrotoxin-like protein on transmitter release are discussed.  相似文献   
6.
γ-Aminobutyric acid A (GABAA) channels responsible for inhibitory synaptic transmission possess a consistent heterogeneity of structure in terms of distinct constitutive subunits. During the past 10 years, considerable progress has been made in understanding the magnitude of this large diversity. Structural requirements for clinically important drugs such as benzodiazepines and barbiturates have been elucidated, and the anatomical distribution in distinct neuronal populations and the developmental profiles of individual subunits have been elucidated with various techniques. However, the relevance of subunit heterogeneity to synaptic transmission is still largely lacking. Recently, substantial progress has been achieved in understanding the crucial role of desensitization as a molecular determinant in defining the duration and frequency responses of inhibitory synaptic transmission. This development, together with a combination of different experimental approaches, including patch-clamp recordings and ultrafast agonist applications in brain slices and mammalian cells expressing recombinant GABAA receptor, has begun to shed light on a possible role for subunit composition of synaptic receptors in shaping the physiological characteristics of synaptic transmission. Nowhere else in the central nervous system is the anatomical and developmental profile of GABA receptor heterogeneity as well understood as it is in the cerebellum. This review summarizes advances in the understanding of functional correlates to subunit heterogeneity in the cerebellum relevant for inhibitory synaptic function.  相似文献   
7.
Pentameric ligand-gated ion channels (pLGICs) mediate numerous physiological processes, including fast neurotransmission in the brain. They are targeted by a large number of clinically-important drugs and disruptions to their function are associated with many neurological disorders. The phosphorylation of pLGICs can result in a wide range of functional consequences. Indeed, many neurological disorders result from pLGIC phosphorylation. For example, chronic pain is caused by the protein kinase A-mediated phosphorylation of α3 glycine receptors and nicotine addiction is mediated by the phosphorylation of α4- or α7-containing nicotinic receptors. A recent study demonstrated that phosphorylation can induce a global conformational change in a pLGIC that propagates to the neurotransmitter-binding site. Here we present evidence that phosphorylation-induced global conformational changes may be a universal phenomenon in pLGICs. This raises the possibility of designing drugs to specifically treat disease-modified pLGICs. This review summarizes some of the opportunities available in this area.  相似文献   
8.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed in the central nervous system and play a regulatory role in neuronal excitability. In the present study, we examined a physiological role of HCN channels in the rat basolateral amygdala (BLA). In vitro electrophysiological studies showed that ZD7288 decreased spontaneous inhibitory postsynaptic current (sIPSC) without changing miniature IPSC (mIPSC). HCN channel blockade also attenuated feedback inhibitions in BLA principal neurons. However, blockade of HCN channel had little effects on spontaneous excitatory postsynaptic current (sEPSC) and mEPSC. Therefore, HCN channel appeared to decrease BLA excitability by increasing the action potential-dependent inhibitory control over the BLA principal neurons. Anxiety is reported to be influenced by neuronal excitability in the BLA and inhibitory synaptic transmission is thought to play a pivotal role in regulating overall excitability of the amygdala. As expected, blockade of HCN channels by targeted injection of ZD7288 to the BLA increased anxiety-like behavior under elevated plus maze test. Our results suggest that HCN channel activity can modulate the GABAergic synaptic transmission in the BLA, which in turn control the amygdala-related emotional behaviors such as anxiety.  相似文献   
9.
The effects of dihydropyridine (1,4-DHP) agonist and antagonists on miniature inhibitory postsynaptic currents (mIPSCs) were investigated in mechanically dissociated rat substantia innominata neurons attached to native GABAergic presynaptic nerve terminals, namely 'synaptic bouton preparation', using nystatin perforated patch recording mode under voltage-clamp conditions. BAY-K 8644 (BAY-K), an L-type Ca(2+) channel agonist, reversibly and concentration dependently facilitated the GABAergic mIPSC frequency without altering the distribution of current amplitudes. Removal of extracellular Ca(2+) completely suppressed the facilitatory effect of BAY-K on mIPSC frequency. The facilitatory effect of BAY-K on mIPSC frequency was maintained even in the presence of selective N-, P- and Q-type Ca(2+) channel antagonists, such as 3 x 10(-6) M omega-conotoxin-GVIA (omega-CgTX-GVIA), 3 x 10(-8) M omega-agatoxin-IVA (omega-AgTX-IVA) and 3 x 10(-6)M omega-conotoxin-MVIIC (omega-CmTX-MVIIC). However, nicardipine (3 x 10(-6) M) and nimodipine (3 x 10(-6) M), 1,4-DHP antagonists, significantly inhibited the mIPSC frequency enhanced by BAY-K by 37 +/- 5 and 42 +/- 6%, respectively. These results suggest the possible existence of L-type Ca(2+) channels in GABAergic presynaptic nerve terminals.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号