首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
  2010年   1篇
  2009年   1篇
  1999年   1篇
  1996年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
牲畜链霉菌异青霉素N合成酶基因的克隆与序列分析   总被引:2,自引:0,他引:2  
产生含硫卜-内酰胺类抗生素的不同微生物种属间(包括原核和真核)的异青霉素N合成酶(IPNS)基因存在着明显的同源性。利用S. lipmanii IPNS基因探针验证了牲畜链霉菌(S. cattleya)染色体DNA中确实含有与之同源的区带,通过与牲畜链霉菌无活性阻断突变株互补克隆的方法,获得了同时含有硫霉素环化酶及IPNS基因的重组质粒。经基因序列分析表明牲畜链霉菌中IPNS基因,由963bp组成,起始密码子为ATG,终止密码子为TGA,共编码321个氨基酸,所克隆的牲畜链霉菌IPNS基因编码蛋白与已知的S. clavuligerusIPNS相似性为56%,与S. lipmaniiIPNS相似性为64%。  相似文献   
2.
Dicamba (2-methoxy-3,6-dichlorobenzoic acid) O-demethylase (DMO) is the terminal Rieske oxygenase of a three-component system that includes a ferredoxin and a reductase. It catalyzes the NADH-dependent oxidative demethylation of the broad leaf herbicide dicamba. DMO represents the first crystal structure of a Rieske non-heme iron oxygenase that performs an exocyclic monooxygenation, incorporating O2 into a side-chain moiety and not a ring system. The structure reveals a 3-fold symmetric trimer (α3) in the crystallographic asymmetric unit with similar arrangement of neighboring inter-subunit Rieske domain and non-heme iron site enabling electron transport consistent with other structurally characterized Rieske oxygenases. While the Rieske domain is similar, differences are observed in the catalytic domain, which is smaller in sequence length than those described previously, yet possessing an active-site cavity of larger volume when compared to oxygenases with larger substrates. Consistent with the amphipathic substrate, the active site is designed to interact with both the carboxylate and aromatic ring with both key polar and hydrophobic interactions observed. DMO structures were solved with and without substrate (dicamba), product (3,6-dichlorosalicylic acid), and either cobalt or iron in the non-heme iron site. The substitution of cobalt for iron revealed an uncommon mode of non-heme iron binding trapped by the non-catalytic Co2+, which, we postulate, may be transiently present in the native enzyme during the catalytic cycle. Thus, we present four DMO structures with resolutions ranging from 1.95 to 2.2 Å, which, in sum, provide a snapshot of a dynamic enzyme where metal binding and substrate binding are coupled to observed structural changes in the non-heme iron and catalytic sites.  相似文献   
3.
Isopenicillin N synthase (IPNS) is a non-heme iron(II) oxidase which catalyses the biosynthesis of isopenicillin N (IPN) from the tripeptide δ-l-α-aminoadipoyl-l-cysteinyl-d-valine (lld-ACV). Herein we report crystallographic studies to investigate the binding of a truncated lll-substrate in the active site of IPNS. Two epimeric tripeptides have been prepared by solution phase peptide synthesis and crystallised with the enzyme. δ-l-α-Aminoadipoyl-l-cysteinyl-d-2-amino-3,3-dideuteriobutyrate (lld-ACd2Ab) has the same configuration as the natural substrate lld-ACV at each of its three stereocentres; its epimer δ-l-α-aminoadipoyl-l-cysteinyl-l-2-amino-3,3-dideuteriobutyrate (lll-ACd2Ab) has the opposite configuration at its third amino acid. lll-ACV has previously been shown to inhibit IPNS turnover of its substrate lld-ACV; the all-protiated tripeptide δ-l-α-aminoadipoyl-l-cysteinyl-d-2-aminobutyrate (lld-ACAb) is a substrate for IPNS, being turned over to a mixture of penam and cepham products. Comparisons between the crystal structures of the IPNS:Fe(II):lld-ACd2Ab and IPNS:Fe(II):lll-ACd2Ab complexes offer a possible rationale for the previously observed inhibitory effects of lll-ACV on IPNS activity.  相似文献   
4.
An extended kinetic model for the first two steps of the penicillin biosynthetic pathway in Penicillium chrysogenum is set up. It includes the formation and reduction of the dimer bis--(l--aminoadipyl)-l-cysteinyl-d-valine (bisACV) from the first pathway intermediate lld-ACV and their parallel inhibition of the enzyme ACV synthetase (ACVS). The kinetic model is based on Michaelis-Menten type kinetics, with non-competitive inhibition of the ACVS by both lld-ACV and bisACV, and competitive inhibition of the isopenicillin N synthetase (IPNS) by glutathione. The inhibition constant of lld-ACV, KACV is determined to be 0.54 mm. With the kinetic model metabolic control analysis is performed to identify the distribution of rate-control in the pathway at all ratios of lld-ACV:bisACV. It is concluded that the flux control totally resides at the IPNS. This is a result of the regulation of the ACVS by both the lld-ACV and bisACV demanding a higher flux through the IPNS enzyme to alleviate their inhibition. The measurement of an intracellular ratio of lld-ACV:bisACV to be in the range of 1–2 moles per moles emphasises the importance of a fast conversion of lld-ACV to IPN, and accumulation of lld-ACV above the Km-value of the IPNS should therefore be avoided.  相似文献   
5.
A T7 promoter-based vector was used to express the isopenicillin N synthase (IPNS) genes of Flavobacterium sp. 12,154 and Streptomyces jumonjinensis in Escherichia coli. Most of the IPNS synthesized at 37 degrees C, and representing some 22% and 51% of the total cell protein respectively, occurred in an insoluble, enzymatically inactive form. Active IPNS was recovered in a rapid and simple two-step procedure in which the insoluble material was first denatured in 5 M urea and then refolded by passing the solubilized IPNS through a G-25 Sephadex sizing column. Further chromatography on DEAE-Sepharose resulted in highly active IPNS preparations. This procedure was found to be well suited for scaling up to produce large amounts of IPNS.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号