首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   2篇
  国内免费   1篇
  2022年   1篇
  2020年   1篇
  2019年   7篇
  2018年   5篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   14篇
  2013年   9篇
  2012年   10篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  1994年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
1.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
2.
The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects.  相似文献   
3.
4.

Introduction

Chemotherapy resistance is a major obstacle in effective neoadjuvant treatment for estrogen receptor-positive breast cancer. The ability to predict tumour response would allow chemotherapy administration to be directed towards only those patients who would benefit, thus maximising treatment efficiency. We aimed to identify putative protein biomarkers associated with chemotherapy resistance, using fresh tumour samples with antibody microarray analysis and then to perform pilot clinical validation experiments.

Materials and methods

Chemotherapy resistant and chemotherapy sensitive tumour samples were collected from breast cancer patients who had received anthracycline based neoadjuvant therapy consisting of epirubicin with cyclophosphamide followed by docetaxel. A total of 5 comparative proteomics experiments were performed using invasive ductal carcinomas which demonstrated estrogen receptor positivity (luminal subtype). Protein expression was compared between chemotherapy resistant and chemotherapy sensitive tumour samples using the Panorama XPRESS Profiler725 antibody microarray containing 725 antibodies from a wide variety of cell signalling and apoptosis pathways. A pilot series of archival samples was used for clinical validation of putative predictive biomarkers.

Results

AbMA analysis revealed 38 differentially expressed proteins which demonstrated at least 1.8 fold difference in expression in chemotherapy resistant tumours and 7 of these proteins (Zyxin, 14-3-3 theta/tau, tBID, Pinin, Bcl-xL, RIP and MyD88) were found in at least 2 experiments. Clinical validation in a pilot series of archival samples revealed 14-3-3 theta/tau and tBID to be significantly associated with chemotherapy resistance.

Conclusions

For the first time, antibody microarrays have been used to identify proteins associated with chemotherapy resistance using fresh breast cancer tissue. We propose a potential role for 14-3-3 theta/tau and tBID as predictive biomarkers of neoadjuvant chemotherapy resistance in breast cancer. Further validation in a larger sample series is now required.  相似文献   
5.
The proteomic response to bacterial infection in a teleost fish (Paralichthys olivaceus) infected with Streptococcus parauberis was analyzed using label-free protein quantitation coupled with LC-MS(E) tandem mass spectrometry. A total of 82 proteins from whole kidney, a major lymphoid organ in this fish, were found to be differentially expressed between healthy and diseased fish analyzed 6, 24, 72 and 120 h post-infection. Among the differentially expressed proteins, those involved in mediating immune responses (e.g., heat shock proteins, cathepsins, goose-type lysozyme and complement components) were most significantly up-regulated by infection. In addition, cell division cycle 48 (CDC48) and calreticulin, which are associated with cellular recovery and glycoprotein synthesis, were up-regulated in the universal protein group, whereas the other proteins in that group were down-regulated. There was continuous activation of expression of immune-associated proteins during infection, but there was also loss of expression of proteins not involved in immune function. We expect that our findings regarding immune response at the protein level would offer new insight into the systemic response to bacterial infection of a major immune organ in teleost fish.  相似文献   
6.
Given their important role in neuronal function, there has been an increasing focus on altered lipid levels in brain disorders. The effect of a high-fat (HF) diet on the lipid profiles of the cortex, hippocampus, hypothalamus, and olfactory bulb of the mouse brain was investigated using nanoflow ultrahigh pressure liquid chromatography-electrospray ionization-tandem mass spectrometry in the current study. For 8?weeks, two groups of 5-week-old mice were fed either an HF or normal diet (6 mice from each group analyzed as the F and N groups, respectively). The remaining mice in both groups then received a 4-week normal diet. Each group was then subdivided into two groups for another 4-week HF or normal diet. Quantitative analysis of 270 of the 359 lipids identified from brain tissue revealed that an HF diet significantly affected the brain lipidome in all brain regions that were analyzed. The HF diet significantly increased diacylglycerols, which play a role in insulin resistance in all regions that were analyzed. Although the HF diet increased most lipid species, the majority of phosphatidylserine species were decreased, while lysophosphatidylserine species, with the same acyl chain, were substantially increased. This result can be attributed to increased oxidative stress due to the HF diet. Further, weight-cycling (yo-yo effect) was found more critical for the perturbation of brain lipid profiles than weight gain without a preliminary experience of an HF diet. The present study reveals systematic alterations in brain lipid levels upon HF diet analyzed either by lipid class and molecular levels.  相似文献   
7.
The GLIS family zinc finger 3 isoform (GLIS3) is a risk gene for Type 1 and Type 2 diabetes, glaucoma and Alzheimer's disease endophenotype. We identified GLIS3 binding sites in insulin secreting cells (INS1) (FDR q < 0.05; enrichment range 1.40–9.11 fold) sharing the motif wrGTTCCCArTAGs, which were enriched in genes involved in neuronal function and autophagy and in risk genes for metabolic and neuro-behavioural diseases. We confirmed experimentally Glis3-mediated regulation of the expression of genes involved in autophagy and neuron function in INS1 and neuronal PC12 cells. Naturally-occurring coding polymorphisms in Glis3 in the Goto-Kakizaki rat model of type 2 diabetes were associated with increased insulin production in vitro and in vivo, suggestive alteration of autophagy in PC12 and INS1 and abnormal neurogenesis in hippocampus neurons. Our results support biological pleiotropy of GLIS3 in pathologies affecting β-cells and neurons and underline the existence of trans?nosology pathways in diabetes and its co-morbidities.  相似文献   
8.
9.
Pancreatic cancer cells (PCCs) interact with pancreatic stellate cells (PSCs), which play a pivotal role in pancreatic fibrogenesis, to develop the cancer-conditioned tumor microenvironment. Exosomes are membrane-enclosed nanovesicles, and have been increasingly recognized as important mediators of cell-to-cell communications. The aim of this study was to clarify the effects of PCC-derived exosomes on cell functions in PSCs. Exosomes were isolated from the conditioned medium of Panc-1 and SUIT-2 PCCs. Human primary PSCs were treated with PCC-derived exosomes. PCC-derived exosomes stimulated the proliferation, migration, activation of ERK and Akt, the mRNA expression of α-smooth muscle actin (ACTA2) and fibrosis-related genes, and procollagen type I C-peptide production in PSCs. Ingenuity pathway analysis of the microarray data identified transforming growth factor β1 and tumor necrosis factor as top upstream regulators. PCCs increased the expression of miR-1246 and miR-1290, abundantly contained in PCC-derived exosomes, in PSCs. Overexpression of miR-1290 induced the expression of ACTA2 and fibrosis-related genes in PSCs. In conclusion, PCC-derived exosomes stimulate activation and profibrogenic activities in PSCs. Exosome-mediated interactions between PSCs and PCCs might play a role in the development of the tumor microenvironment.  相似文献   
10.
Little information is still available on the mechanisms underlying seed persistence in the soil in several species, and most particularly in vegetation of the rupestrian fields of the Espinhaço Range in Brazil, where ca. 90% of their species are endemic and are of interest for conservation biology. Here we aimed at examining the putative physiological and biochemical changes seeds of one of this species (Vellozia alata L.B.Sm., Velloziaceae) may experience after burial under natural conditions. Endogenous concentrations of phytohormones and oxidative stress markers were measured in seeds buried in the soil for 12 months. Buried seeds experienced a significant loss of germination capacity, which decreased from 58 to 29% during the first 6 months. This was associated with a decline in gibberellins (by 65%), abscisic acid (by 98%), cytokinins (up to 75%) and jasmonic acid (by 97%) during the first 3 months, while salicylic acid increased at 6 months of burial. Malondialdehyde and tocopherol levels also decreased dramatically to non-detectable values during this period, while all tocotrienol homologues decreased by 30%. By contrast, germination capacity remained constant around 30% between 6 and 12 months of burial. During this period, concentrations of all phytohormones examined remained unaltered, except for salicylic acid, whose levels returned to initial values. Tocotrienols decreased significantly, particularly between 9 and 12 months of burial, while the extent of lipid peroxidation remained constant. It is concluded that in V. alata, (i) seed burial causes dramatic changes in phytohormones and in the extent of lipid peroxidation, while the potential for germination decreases; (ii) after 6 months of burial, seed germination capacity remains constant, at least until one year, which is associated with absence of oxidative damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号