首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   20篇
  2018年   1篇
  2017年   6篇
  2016年   6篇
  2015年   11篇
  2014年   1篇
  2013年   21篇
  2012年   5篇
排序方式: 共有51条查询结果,搜索用时 375 毫秒
1.
Abstract

Recent findings indicate that nitric oxide (NO?) over-production might be an important factor in the pathogenesis of sporadic amyotrophic lateral sclerosis (SALS). We measured significantly higher concentrations of uric acid and thiol group-containing molecules (R–SH groups) in the cerebrospinal fluid (CSF) from SALS patients compared to controls. The above factors, together with a slightly increased free iron concentration found in the CSF, favour conditions necessary for the formation of the dinitrosyl iron complex, capable of NO? bio-transformation. Thus, we performed ex vivo saturation of CSF (from both SALS patients and controls) with NO?. A decrease in the level of R–SH was found. This was more pronounced in the CSF from SALS patients. In the CSF from SALS patients the production of nitrite and hydroxylamine was greater than that observed in the CSF from controls. Moreover, we also found increased Cu,Zn-SOD activity in the CSF from SALS patients (when compared to control subjects) but no activity corresponding to Mn-SOD in any CSF samples. As Cu,Zn-SOD can react with nitroxyl forming NO?, the conditions for a closed, but continuous, loop of NO? biotransformation are present in the CSF of ALS patients.  相似文献   
2.
3.
The F1F0 ATP synthase has recently become the focus of anti‐cancer research. It was once thought that ATP synthases were located strictly on the inner mitochondrial membrane; however, in 1994, it was found that some ATP synthases localized to the cell surface. The cell surface ATP synthases are involved in angiogenesis, lipoprotein metabolism, innate immunity, hypertension, the regulation of food intake, and other processes. Inhibitors of this synthase have been reported to be cytotoxic and to induce intracellular acidification. However, the mechanisms by which these effects are mediated and the molecular pathways that are involved remain unclear. In this study, we aimed to determine whether the inhibition of cell proliferation and the induction of cell apoptosis that are induced by inhibitors of the cell surface ATP synthase are associated with intracellular acidification and to investigate the mechanism that underlines the effects of this inhibition, particularly in an acidic tumor environment. We demonstrated that intracellular acidification contributes to the cell proliferation inhibition that is mediated by cell surface ATP synthase inhibitors, but not to the induction of apoptosis. Intracellular acidification is only one of the mechanisms of ecto‐ATP synthase‐targeted antitumor drugs. We propose that intracellular acidification in combination with the inhibition of cell surface ATP generation induce cell apoptosis after cell surface ATP synthase blocked by its inhibitors. A better understanding of the mechanisms activated by ecto‐ATP synthase‐targeted cancer therapies may facilitate the development of potent anti‐tumor therapies, which target this enzyme and do not exhibit clinical limitations. J. Cell. Biochem. 114: 1695–1703, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
4.
5.
6.
7.
Abstract

The role of Saccharomyces cerevisiae flavohemoglobin (Yhb1) is controversial and far from understood. This study compares the effects of nitrosative and oxidative challenge on the yeast mutant lacking the YHB1 gene. Growth of the mutant was impaired by nitrosoglutathione and peroxynitrite, whereas increased sensitivity to reactive oxygen species was not observed. Increased levels of intracellular NO? after incubation with NO? donors were found in the mutants cells as compared to the wild-type cells. Deletion of the YHB1 gene was found to augment the reduction of Fe3+ by yeast cells which suggests that flavohemoglobin participates in regulation of the activity of plasma membrane ferric reductase(s).  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号