首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  13篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2007年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
2.
Previous studies have shown that intradermally (ID) injected Brugia pahangi L3s migrate through various tissues and into the lymphatics of gerbils in a distinct pattern. Excretory/secretory products (ES) produced at the time of invasion of B. pahangi are likely to be important in this early migration phase of the parasite life cycle in their rodent host. Hence, early L3 ES was collected from 24 h in vitro cultures of B. pahangi L3 larvae and used in immunization experiments to investigate the effect of immunity to early L3 ES on worm migration, survival and development of B. pahangi. Immunization of gerbils with ES in RIBI adjuvant produced antibodies to numerous ES proteins eliciting a strong humoral response to ES and indirect fluorescent antibody (IFA) assay using anti-ES serum recognized the ES proteins on the surface of B. pahangi L3 larvae. Following ES immunization, gerbils were challenged either ID or intraperitoneally (IP) with 100 L3s of B. pahangi and euthanized at 3 or 106 days post inoculation (DPI). Immunization with early ES slowed the migration of ID inoculated L3 at 3 DPI and significantly altered the locations of adult worms at 106 DPI. Immunization did not induce protection in any treatment group. However, immunized animals had significantly fewer microfilariae per female worm suggesting the antigens in ES are important in microfilariae development or survival in the host. The number of lymphatic granulomas was also significantly reduced in ES immunized animals. It is important to note that microfilariae serve as a nidus in these granulomas. Our results shows immunization with early Brugia malayi L3 ES alters the worm migration, affects circulating microfilarial numbers and reduces lymphatic granulomas associated with B. pahangi infection in gerbils.  相似文献   
3.
Intraluminal thrombus (ILT) is present in 75% of clinically-relevant abdominal aortic aneurysms (AAAs) yet, despite much research effort, its role in AAA biomechanics remains unclear. The aim of this work is to further evaluate the biomechanics of ILT and determine if different ILT morphologies have varying mechanical properties.  相似文献   
4.
We studied the oligomeric properties of betaretroviral nonmyristoylated matrix protein (MA) and its R55F mutant from the Mason-Pfizer monkey virus in solution by means of chemical crosslinking and NMR spectroscopy. By analyzing crosslinked products and using concentration-dependent NMR chemical shift mapping, we have proven that the wild-type (WT) MA forms oligomers in solution. Conversely, no oligomerization was observed for the R55F mutant. Structural comparison of MAs explained their different behaviors in solution, concluding that the key residues involved in intermonomeric interaction are exposed in the WT MA but buried in the mutant, preventing the oligomerization of R55F. The final model of oligomerization of the WT MA was derived by concerted use of chemical shift mapping and diffusion-ordered spectroscopy measured on a set of protein samples with varying concentrations. We found that the Mason-Pfizer monkey virus WT MA exists in a monomer-dimer-trimer equilibrium in solution, with the corresponding dissociation constants of 2.3  and 0.24 mM, respectively. Structures of the oligomers calculated with HADDOCK software are closely related to the structures of other retroviral MA trimers.  相似文献   
5.
In the uropathogenic Escherichia coli strain F11, in silico genome analysis revealed the dicistronic iron uptake operon fetMP, which is under iron-regulated control mediated by the Fur regulator. The expression of fetMP in a mutant strain lacking known iron uptake systems improved growth under iron depletion and increased cellular iron accumulation. FetM is a member of the iron/lead transporter superfamily and is essential for iron uptake by the Fet system. FetP is a periplasmic protein that enhanced iron uptake by FetM. Recombinant FetP bound Cu(II) and the iron analog Mn(II) at distinct sites. The crystal structure of the FetP dimer reveals a copper site in each FetP subunit that adopts two conformations: CuA with a tetrahedral geometry composed of His44, Met90, His97, and His127, and CuB, a second degenerate octahedral geometry with the addition of Glu46. The copper ions of each site occupy distinct positions and are separated by ∼1.3 Å. Nearby, a putative additional Cu(I) binding site is proposed as an electron source that may function with CuA/CuB displacement to reduce Fe(III) for transport by FetM. Together, these data indicate that FetMP is an additional iron uptake system composed of a putative iron permease and an iron-scavenging and potentially iron-reducing periplasmic protein.  相似文献   
6.
7.
The myeloid inhibitory receptor LILRB4 (also called ILT3, LIR-5, CD85k), a member of the leukocyte immunoglobulin-like receptors (LILRs/LIRs), is an important mediator of immune tolerance. Up-regulated on tolerogenic dendritic cells, it has been shown to modulate immune responses via induction of T cell anergy and differentiation of CD8+ T suppressor cells and may play a role in establishing immune tolerance in cancer. Consequently, characterizing the molecular mechanisms involved in LILRB4 function and in particular its structure and ligands is a key aim but has remained elusive to date. Here we describe the production, crystallization, and structure of the LILRB4 ectodomain to 1.7 Å using an expression strategy involving engineering of an additional disulfide bond in the D2 domain to enhance protein stability. LILRB4 comprises two immunoglobulin domains similar in structure to other LILRs; however, the D2 domain, which is most closely related to the D4 domains of other family members, contains 310 helices not previously observed. At the D1-D2 interface, reduced interdomain contacts resulted in an obtuse interdomain angle of ∼107°. Comparison with MHC class I binding Group 1 LILRs suggests LILRB4 is both conformationally and electrostatically unsuited to MHC ligation, consistent with LILRB4 status as a Group 2 LILR likely to bind novel non-MHC class I ligands. Finally, examination of the LILRB4 surface highlighted distinctive surface patches on the D1 domain and D1D2 hinge region, which may be involved in ligand binding. These findings will facilitate our attempts to precisely define the role of LILRB4 in the regulation of immune tolerance.  相似文献   
8.
The leukocyte Ig-like receptor (LILR/ILT/LIR) family comprises 13 members that are either activating or inhibitory receptors, regulating a broad range of cells in the immune responses. LILRB1 (ILT2), LILRB2 (ILT4) and LILRA1 (LIR6) can recognize MHC (major histocompatibility complex) class I or class I-like molecules, and LILRB1/HLA-A2, LILRB1/UL18 and LILRB2/HLA-G complex (extracellular domains D1D2) structures have been solved recently. The details of binding to MHC have been described. Despite high levels of sequence similarity among LILRA1, LILRA2 (ILT1), LILRA3 (ILT6) and LILRB1/B2, all earlier experiments showed that LILRA2 does not bind to MHC, but the reason is unknown. Here, we report the LILRA2 extracellular D1D2 domain crystal structure at 2.6 Å resolution, which reveals structural shifts of the corresponding MHC-binding amino acid residues in comparison with LILR B1/B2, explaining its non-binding to MHC molecules. We identify some key residues with great influence on the local structure, which exist only in the MHC-binding receptors. Moreover, we show that LILRA2 forms a domain-swapped dimer. Further work with these key swapping residues yields a monomeric form, confirming that the domain-swapping is primarily amino acid sequence-specific. The structure described here supports the dimer conformation in solution observed earlier, and implies a stress-induced regulation by dimerization, consistent with its function as a heat shock promoter.  相似文献   
9.
10.
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology – as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号