首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The PML protein and PML nuclear bodies (PML-NB) are implicated in multiple cellular functions relevant to tumor suppression, including DNA damage response. In most cases of acute promyelocytic leukemia, the PML and retinoic acid receptor alpha (RARA) genes are translocated, resulting in expression of oncogenic PML-RARα fusion proteins. PML-NB fail to form normally, and promyelocytes remain in an undifferentiated, abnormally proliferative state. We examined the involvement of PML protein and PML-NB in homologous recombinational repair (HRR) of chromosomal DNA double-strand breaks. Transient overexpression of wild-type PML protein isoforms produced hugely enlarged or aggregated PML-NB and reduced HRR by ~2-fold, suggesting that HRR depends to some extent upon normal PML-NB structure. Knockdown of PML by RNA interference sharply attenuated formation of PML-NB and reduced HRR by up to 20-fold. However, PML-knockdown cells showed apparently normal induction of H2AX phosphorylation and RAD51 foci after DNA damage by ionizing radiation. These findings indicate that early steps in HRR, including recognition of DNA double-strand breaks, initial processing of ends, and assembly of single-stranded DNA/RAD51 nucleoprotein filaments, do not depend upon PML-NB. The HRR deficit in PML-depleted cells thus reflects inhibition of later steps in the repair pathway. Expression of PML-RARα fusion proteins disrupted PML-NB structure and reduced HRR by up to 10-fold, raising the possibility that defective HRR and resulting genomic instability may figure in the pathogenesis, progression and relapse of acute promyelocytic leukemia.  相似文献   
2.
3.
Across the evolutionary spectrum, living organisms depend on high-fidelity DNA replication and recombination mechanisms to maintain genome stability and thus to avoid mutation and disease. The repair of severe lesions in the DNA such as double-strand breaks or stalled replication forks requires the coordinated activities of both the homologous recombination (HR) and DNA replication machineries. Growing evidence indicates that so-called "accessory proteins" in both systems are essential for the effective coupling of recombination to replication which is necessary to restore genome integrity following severe DNA damage. In this article we review the major processes of homology-directed DNA repair (HDR), including the double Holliday Junction (dHJ), synthesis-dependent strand annealing (SDSA), break-induced replication (BIR), and error-free lesion bypass pathways. Each of these pathways involves the coupling of a HR event to DNA synthesis. We highlight two major classes of accessory proteins in recombination and replication that facilitate HDR: Recombination mediator proteins exemplified by T4 UvsY, Saccharomyces cerevisiae Rad52, and human BRCA2; and DNA helicases/translocases exemplified by T4 Gp41/Gp59, E. coli DnaB and PriA, and eukaryotic Mcm2-7, Rad54, and Mph1. We illustrate how these factors help to direct the flow of DNA and protein-DNA intermediates on the pathway from a double-strand break or stalled replication fork to a high-fidelity recombination-dependent replication apparatus that can accurately repair the damage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号