首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  2022年   1篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2004年   2篇
  2001年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Cycloisomaltooligosaccharide glucanotransferase (CITase; EC 2.4.1.248), a member of the glycoside hydrolase family 66 (GH66), catalyzes the intramolecular transglucosylation of dextran to produce cycloisomaltooligosaccharides (CIs; cyclodextrans) of varying lengths. Eight CI-producing bacteria have been found; however, CITase from Bacillus circulans T-3040 (CITase-T3040) is the only CI-producing enzyme that has been characterized to date. In this study, we report the gene cloning, enzyme characterization, and analysis of essential Asp and Glu residues of a novel CITase from Paenibacillus sp. 598K (CITase-598K). The cit genes from T-3040 and 598K strains were expressed recombinantly, and the properties of Escherichia coli recombinant enzymes were compared. The two CITases exhibited high primary amino acid sequence identity (67%). The major product of CITase-598K was cycloisomaltoheptaose (CI-7), whereas that of CITase-T3040 was cycloisomaltooctaose (CI-8). Some of the properties of CITase-598K are more favorable for practical use compared with CITase-T3040, i.e., the thermal stability for CITase-598K (≤ 50 °C) was 10 °C higher than that for CITase-T3040 (≤ 40 °C); the kcat/KM value of CITase-598K was approximately two times higher (32.2 s− 1 mM− 1) than that of CITase-T3040 (17.8 s− 1 mM− 1). Isomaltotetraose was the smallest substrate for both CITases. When isomaltoheptaose or smaller substrates were used, a lag time was observed before the intramolecular transglucosylation reaction began. As substrate length increased, the lag time shortened. Catalytically important residues of CITase-598K were predicted to be Asp144, Asp269, and Glu341. These findings will serve as a basis for understanding the reaction mechanism and substrate recognition of GH66 enzymes.  相似文献   
2.
Preliminary results obtained from histological analyses of the male reproductive organs, supplemented with field and behavioural data, indicate that Sufflogobius bibarbatus, a small, slow growing gobiid exhibiting low fecundity, which plays an important role in the food web off Namibia, where large areas of the shelf are hypoxic, spawns demersally. Large males defend benthic nests, possibly at the edge of the hypoxic shelf. Male reproductive strategy appears to be flexible, and tentative evidence to suggest that polygyny and sneaking may also occur is presented.  相似文献   
3.
T-lymphocytes (T-cells) are unique in that unlike monocytes, they have no insulin receptors, and are insulin insensitive, but upon activation with antigens develop insulin, IGF-1, and IL-2 receptors, and become insulin sensitive tissues. In vivo activation of these cells has now been demonstrated in patients with diabetic ketoacidosis. We analyzed the genomics and proteomics of activated and non-activated CD4+ and CD8+ T-cells of normal subjects using Affymetrix microarray gene chips and proteomes by SELDI-TOF mass spectrometry analysis. Genes for IL-2, insulin, and IGF-1 receptors were increased at least 2-fold in activated vs non-activated T-cells. Using an expression array containing the entire human genome of 39,500 genes, we evaluated approximately 27,000 genes relevant in physiologic and cellular ontologies. Of these, approximately 10,500 genes were increased in activated cells, compared to about 7,000, which were decreased, and approximately 9500, which were unchanged. Among activated ontologies were signal transduction pathways such as IRS-1, IRS-2, Akt, and glycolytic pathways. To our knowledge this is the first report of an hitherto unreported event. Possible implications of these processes are discussed in the light of their physiological significance.  相似文献   
4.
More and more antibody therapeutics are being approved every year, mainly due to their high efficacy and antigen selectivity. However, it is still difficult to identify the antigen, and thereby the function, of an antibody if no other information is available. There are obstacles inherent to the antibody science in every project in antibody drug discovery. Recent experimental technologies allow for the rapid generation of large-scale data on antibody sequences, affinity, potency, structures, and biological functions; this should accelerate drug discovery research. Therefore, a robust bioinformatic infrastructure for these large data sets has become necessary. In this article, we first identify and discuss the typical obstacles faced during the antibody drug discovery process. We then summarize the current status of three sub-fields of antibody informatics as follows: (i) recent progress in technologies for antibody rational design using computational approaches to affinity and stability improvement, as well as ab-initio and homology-based antibody modeling; (ii) resources for antibody sequences, structures, and immune epitopes and open drug discovery resources for development of antibody drugs; and (iii) antibody numbering and IMGT. Here, we review “antibody informatics,” which may integrate the above three fields so that bridging the gaps between industrial needs and academic solutions can be accelerated. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.  相似文献   
5.
Aphidophagous predators compete for the same prey species. During their foraging activity they frequently encounter heterospecific aphid predators. These situations can lead to intraguild predation and may disrupt biological control efforts against aphids where more than one predator species is present. We investigated the behavior of larvae of the hoverfly Episyrphus balteatus de Geer and its interaction with three other aphid predators: the ladybird Coccinella septempunctata L., the lacewing Chrysoperla carnea Stephens, and the gall midge Aphidoletes aphidimyza (Rondani). Interspecific interactions between predators were examined in arenas of different sizes and in the presence of extraguild prey. The outcome of interactions between E. balteatus larvae and the other predators depended predominantly on the relative body size of the competitors. Relatively large individuals acted as intraguild predators, while relatively smaller individuals became intraguild prey. Eggs and first- as well as second-instar larvae of E. balteatus were highly susceptible to predation by all other predators, whereas pupae of E. balteatus were preyed upon only by the larvae of C. carnea. Interactions between A. aphidimyza and E. balteatus were asymmetric and always favored the latter. Eggs and first- as well as second-instar larvae of E. balteatus sustained intraguild predation irrespective of the size of the arena or the presence of extraguild prey. However, the frequency of predation on third-instar larvae of E. balteatus was significantly reduced. This study indicated that the same species can be both intraguild predator and intraguild prey. It is suggested that combinations of predators must be carefully chosen for success in biological control of aphids.  相似文献   
6.
R J Zagursky  M L Berman 《Gene》1984,27(2):183-191
We have constructed chimeric plasmid vectors with the origin and intergenic region from M13 phage cloned into the PvuII ( pZ145 ) and AhaIII ( pZ150 , pZ152 ) sites of pBR322. In the absence of M13 phage, these plasmids replicate like any other ColE1-derived plasmid and confer both ampicillin and tetracycline resistance (Amp, Tet). Upon infection with M13 phage, the viral origin present on the plasmids permits phage-directed plasmid replication and results in high yields of single-stranded (ss) plasmid DNA in M13-like particles. This ssDNA, which represents only one of the plasmid strands, is useful as a substrate for rapid DNA sequence determination by the dideoxy sequencing method described by Sanger et al. (1977). Since these plasmids contain an intact pBR322, the intergenic region can be transferred onto most pBR322 derivatives to yield ss plasmid DNA without affecting the recipient plasmid for further studies. We also constructed a deletion derivative of pZ145 , plasmid pZ146 , that does not exhibit interference with the growth of the M13 helper, although this plasmid is encapsidated into phage particles. This result confirms the theory that the intergenic region consists of two domains: one domain being a segment involved in phage morphogenesis and the other being a region of functional origin which interferes with M13 replication.  相似文献   
7.
8.
Effects of grinding processes on enzymatic degradation of wheat straw   总被引:1,自引:0,他引:1  
The effectiveness of wheat straw fine to ultra-fine grindings at pilot scale was studied. The produced powders were characterised by their particle-size distribution (laser diffraction), crystallinity (WAXS) and enzymatic degradability (Trichoderma reesei enzymatic cocktail). A large range of wheat-straw powders was produced: from coarse (median particle size ∼800 μm) to fine particles (∼50 μm) using sieve-based grindings, then ultra-fine particles ∼20 μm by jet milling and ∼10 μm by ball milling. The wheat straw degradability was enhanced by the decrease of particle size until a limit: ∼100 μm, up to 36% total carbohydrate and 40% glucose hydrolysis yields. Ball milling samples overcame this limit up to 46% total carbohydrate and 72% glucose yields as a consequence of cellulose crystallinity reduction (from 22% to 13%). Ball milling appeared to be an effective pretreatment with similar glucose yield and superior carbohydrate yield compared to steam explosion pretreatment.  相似文献   
9.
We have determined the crystal structure of Streptococcus mutans dextran glucosidase, which hydrolyzes the α-1,6-glucosidic linkage of isomaltooligosaccharides from their non-reducing ends to produce α-glucose. By using the mutant of catalytic acid Glu236→Gln, its complex structure with the isomaltotriose, a natural substrate of this enzyme, has been determined. The enzyme has 536 amino acid residues and a molecular mass of 62,001 Da. The native and the complex structures were determined by the molecular replacement method and refined to 2.2 Å resolution, resulting in a final R-factor of 18.3% for significant reflections in the native structure and 18.4% in the complex structure. The enzyme is composed of three domains, A, B and C, and has a (β/α)8-barrel in domain A, which is common to the α-amylase family enzymes. Three catalytic residues are located at the bottom of the active site pocket and the bound isomaltotriose occupies subsites −1 to +2. The environment of the glucose residue at subsite −1 is similar to the environment of this residue in the α-amylase family. Hydrogen bonds between Asp60 and Arg398 and O4 atom of the glucose unit at subsite −1 accomplish recognition of the non-reducing end of the bound substrate. The side-chain atoms of Glu371 and Lys275 form hydrogen bonds with the O2 and O3 atoms of the glucose residue at subsite +1. The positions of atoms that compose the scissile α-1,6-glucosidic linkage (C1, O6 and C6 atoms) are identical with the positions of the atoms in the scissile α-1,4 linkage (C1, O4 and C4 atoms) of maltopentaose in the α-amylase structure from Bacillus subtilis. The comparison with the α-amylase suggests that Val195 of the dextran glucosidase and the corresponding residues of α-1,6-hydrolyzing enzymes participate in the determination of the substrate specificity of these enzymes.  相似文献   
10.
《MABS-AUSTIN》2013,5(4):707-718
Nonhuman primates (NHPs) are used as a preclinical model for vaccine development, and the antibody profiles to experimental vaccines in NHPs can provide critical information for both vaccine design and translation to clinical efficacy. However, an efficient protocol for generating monoclonal antibodies from single antibody secreting cells of NHPs is currently lacking. In this study we established a robust protocol for cloning immunoglobulin (IG) variable domain genes from single rhesus macaque (Macaca mulatta) antibody secreting cells. A sorting strategy was developed using a panel of molecular markers (CD3, CD19, CD20, surface IgG, intracellular IgG, CD27, Ki67 and CD38) to identify the kinetics of B cell response after vaccination. Specific primers for the rhesus macaque IG genes were designed and validated using cDNA isolated from macaque peripheral blood mononuclear cells. Cloning efficiency was averaged at 90% for variable heavy (VH) and light (VL) domains, and 78.5% of the clones (n = 335) were matched VH and VL pairs. Sequence analysis revealed that diverse IGHV subgroups (for VH) and IGKV and IGLV subgroups (for VL) were represented in the cloned antibodies. The protocol was tested in a study using an experimental dengue vaccine candidate. About 26.6% of the monoclonal antibodies cloned from the vaccinated rhesus macaques react with the dengue vaccine antigens. These results validate the protocol for cloning monoclonal antibodies in response to vaccination from single macaque antibody secreting cells, which have general applicability for determining monoclonal antibody profiles in response to other immunogens or vaccine studies of interest in NHPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号