首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   2篇
  2013年   2篇
  2012年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   2篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Lesch-Nyhan syndrome results from a deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT). It is manifest by behavioral abnormalities, including self-mutilation, and evidence of abnormal 3,4-dihydroxyphenylethylamine (dopamine) metabolism. To assess whether an HPRT deficiency in a dopaminergic cell can adversely affect dopamine metabolism in that cell, dopamine metabolism was examined in HPRT-deficient variants of PC12 pheochromocytoma cells and in cells that had regained HPRT activity by virtue of transformation with a recombinant retrovirus containing the human gene for HPRT. There was no correlation between HPRT activity and endogenous dopamine levels, dopamine uptake, dopamine release, or monoamine oxidase activity. Transformation with the HPRT retrovirus did not adversely affect dopamine metabolism.  相似文献   
2.
Brain Purines in a Genetic Mouse Model of Lesch-Nyhan Disease   总被引:3,自引:1,他引:2  
Abstract: Mice carrying a mutation in the gene encoding the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) have recently been produced to provide an animal model for Lesch-Nyhan disease. The current-studies were conducted to characterize the consequences of the mutation on the expression of HPRT and to characterize potential changes in brain purine content in these mutants. Our results indicate that the mutant animals have no detectable HPRT-immunoreactive material on western blots and no detectable HPRT enzyme activity in brain tissue homogenates, confirming that they are completely HPRT deficient (HPRT-). Despite the absence of HPRT-mediated purine salvage, the animals have apparently normal brain purine content. However, de novo purine synthesis, as measured by [14C]formate incorporation into brain purines, is accelerated four- to fivefold in the mutant animals. This increase in the synthesis of purines may protect the HPRT- mice from potential depletion of brain purines despite complete impairment of HPRT-mediated purine salvage.  相似文献   
3.
正常人外周血用~(60)Co射线分别进行1~8Gy照射后,在含6-TG的培养基上克隆和筛选人淋巴细胞hprt突变细胞。细胞的突变频率与γ射线的照射剂量呈正相关.获得42个hprt突变细胞株,用8对hprt寡核苷酸引物进行多聚酶链反应(PCR)从细胞粗提物中分别扩增hprt各个外显子,分析突变细胞的hprt基因突变,约60%(25/42)的hprt基因突变为基因缺失,其中13个突变是hprt基因全部缺失,而12个是部分hprt基因外显子缺失,约有40%(17/42)的突变无明显的PCR扩增变化.同时显示hprt基因外显子的缺失突变与辐射剂量有关,实验结果提示,此方法有可能用于估计辐射剂量和进行辐射远后效果观察,进而揭示辐射致突的分子机理.  相似文献   
4.
5.
Overexpressed cyclin E in tumours is a prognosticator for poor patient outcome. Cells that overexpress cyclin E have been shown to be impaired in S-phase progression and exhibit genetic instability that may drive this subset of cancers. However, the origin for genetic instability caused by cyclin E overexpression is unknown. Homologous recombination plays an important role in S-phase progression and is also regulated by the same proteins that regulate cyclin E-associated kinase activity, i.e., p53 and p21. To test the hypothesis that overexpressed cyclin E causes genetic instability through homologous recombination, we investigated the effect of cyclin E overexpression on homologous recombination in the hprt gene in a Chinese hamster cell line. Although cyclin E overexpression shortened the G1 phase in the cell cycle as expected, we could see no change in neither spontaneous nor etoposide-induced recombination. Also, overexpression of cyclin E did not affect the repair of DNA double-strand breaks and failed to potentiate the cytotoxic effects of etoposide. Our data suggest that genetic instability caused by overexpression of cyclin E is not mediated by aberrant homologous recombination.  相似文献   
6.
Abstract : Lesch-Nyhan disease is a neurogenetic disorder caused by deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). Affected individuals exhibit a characteristic pattern of neurological and behavioral features attributable in part to dysfunction of basal ganglia dopamine systems. In the current studies, striatal dopamine loss was investigated in five different HPRT-deficient strains of mice carrying one of two different HPRT gene mutations. Caudoputamen dopamine concentrations were significantly reduced in all five of the strains, with deficits ranging from 50.7 to 61.1%. Mesolimbic dopamine was significantly reduced in only three of the five strains, with a range of 31.6-38.6%. The reduction of caudoputamen dopamine was age dependent, emerging between 4 and 12 weeks of age. Tyrosine hydroxylase and aromatic amino acid decarboxylase, two enzymes responsible for the synthesis of dopamine, were reduced by 22.4-37.3 and 22.2-43.1%, respectively. These results demonstrate that HPRT deficiency is strongly associated with a loss of basal ganglia dopamine. The magnitude of dopamine loss measurable is dependent on the genetic background of the mouse strain used, the basal ganglia sub-region examined, and the age of the animals at assessment.  相似文献   
7.
Mutant frequency at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene in the peripheral blood lymphocytes obtained from 44 healthy individuals (23 non-smokers and 21 smokers) of an Indian male population was studied using T-lymphocyte cloning assay. It was found that ln MF increased with age at a rate of 2.5% per year (P < 0.001). Blood samples from smokers showed a significant (P < 0.037) increase in HPRT mutant frequency (MF) (10.43 ± 4.74 × 10−6) as compared to that obtained from non-smokers (7.69 ± 3.69 × 10−6). This study also showed a significant (P < 0.027) inverse correlation between ln MF and non-selected cloning efficiency (CE). However, with respect to age no variation was observed in cloning efficiency. The results obtained in this study showed a good comparison with those reported in different populations of the world.  相似文献   
8.
Lesch-Nyhan syndrome (LNS) is caused by a severe deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) and clinically characterized by self-injurious behavior and nephrolithiasis; the latter is treatable with allopurinol, an inhibitor of xanthine oxidase which converts xanthine and hypoxanthine into uric acid. In the HPRT gene, more than 200 different mutations are known, and de novo mutation occurs at a high rate. Thus, there is a great need to develop a highly specific method to detect patients with HPRT dysfunction by quantifying the metabolites related to this enzyme. A simplified urease pretreatment of urine, gas chromatography-mass spectrometry, and stable isotope dilution method, developed for cutting-edge metabonomics, was further applied to quantify hypoxanthine, xanthine, urate, guanine and adenine in 100 microl or less urine or eluate from filter-paper-urine strips by additional use of stable isotope labeled guanine and adenine as the internal standards. In this procedure, the recoveries were above 93% and linearities (r(2)=0.9947-1.000) and CV values (below 7%) of the indicators were satisfactory. In four patients with proven LNS, hypoxanthine was elevated to 8.4-9.0 SD above the normal mean, xanthine to 4-6 SD above the normal mean, guanine to 1.9-3.7 SD, and adenine was decreased. Because of the allopurinol treatment for all the four patients, their level of urate was not elevated, orotate increased, and uracil was unchanged as compared with the control value. It was concluded that even in the presence of treatment with allopurinol, patients with LNS can be chemically diagnosed by this procedure. Abnormality in the levels of hypoxanthine and xanthine was quite prominent and n, the number of standard deviations above the normal mean, combined for the two, was above 12.9.  相似文献   
9.
Abstract: Previous studies showed that in cultured chick ciliary ganglion neurons and CNS glia, adenosine can be synthesized by hydrolysis of 5'-AMP and that the accumulation of the adenosine degradative products inosine and hypoxanthine was significantly greater in glial than in neuronal cultures. Furthermore, previous immunochemical and histochemical studies in brain showed that adenosine deaminase and nucleoside phosphorylase are localized in endothelial and glial cells but are absent in neurons; however, adenosine deaminase may be found in a few neurons in discrete brain regions. These results suggested that adenosine degradative pathways may be more active in glia. Thus, we have determined if there is a differential distribution of adenosine deaminase, nucleoside phosphorylase, and xanthlne oxidase enzyme fluxes in glia, comparing primary cultures of central and ciliary ganglion neurons and glial cells from chick embryos. Hypoxanthine-guanine phosphoribosyltransferase and production of adenosine by S-adenosylhomocysteine hydrolase activity were also examined. Our results show that there is a distinct profile of purine metabolizing enzymes for glia and neurons in culture. Both cell types have an S-adenosylhomocysteine hydrolase, but it was more active in neurons than in glia. In contrast, in glia the enzymatic activities of xanthine oxidase (443 ± 61 pmol/min/107 cells), nucleoside phosphorylase (187 ± B pmol/min/107 cells), and adenosine deaminase (233 ± 32 pmol/min/107 cells) were more active at least 100, 20, and five times, respectively, than in ciliary ganglion neurons and 100, 100, and nine times, respectively, than in central neurons.  相似文献   
10.
Zhu J 《Biotechnology advances》2012,30(5):1158-1170
Mammalian cell expression has become the dominant recombinant protein production system for clinical applications because of its capacity for post-translational modification and human protein-like molecular structure assembly. While expression and production have been fully developed and Chinese hamster ovary cells are used for the majority of products both on the market and in clinical development, significant progresses in developing and engineering new cell lines, introducing novel genetic mechanisms in expression, gene silencing, and gene targeting, have been reported in the last several years. With the latest analytical methods development, more attention is being devoted towards product quality including glycol profiling, which leads to better understanding the impact of culture condition during production. Additionally, transient gene expression technology platform plays more important role in biopharmaceutical early development stages. This review focused on the latest advancements in the field, especially in active areas such as expression systems, glycosylation impact factors, and transient gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号