首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2017年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
The genus Hypericum (Hypericaceae) has attracted scientific interest as its members have yielded many bioactive compounds. In the present study we investigated the content of hypericin, pseudohypericin, hyperforin, adhyperforin, chlorogenic acid, neochlorogenic acid, caffeic acid, 2,4-dihydroxybenzoic acid, 13,II8-biapigenin, hyperoside, isoquercitrin, quercitrin, quercetin, avicularin, rutin, (+)-catechin and (−)-epicatechin in aerial parts of plants from populations of H. androsaemum L. and H. polyphyllum Boiss. & Bal. from Turkey growing at different altitudes. The plant materials were dried and subsequently assayed for chemical content by HPLC. All the tested compounds were detected in both species at varying levels depending upon the altitude the plants were growing, except for hypercins and rutin which did not accumulate in H. androsaemum. It was observed that overall the compounds were more abundant in plants from higher altitudes. The differences in the levels of the compounds could contribute to the ability of the plants to deal with the abiotic stress of lower temperature and higher ultraviolet (UV)-B radiation which would be greater at higher altitudes compared to lower altitudes.  相似文献   
2.
湖北小连翘(Hypericum hubeiense L.H.Wu et D.P.Yang)是2004年在我国发现的一个金丝桃属(Hypericum)植物(藤黄科)新种.利用高效液相色谱与质谱联用技术对该植物中主要化学成分进行了分离分析,初步鉴定出金丝桃素类、黄酮类等12种化学成分.同时,以金丝桃素为外标,采用HPLC法在590 nm波长下测定了金丝桃素类成分的含量.  相似文献   
3.
Hypericum perforatum L. (St. John’s wort) and Hypericum sampsonii Hance are medicinal plants used in China in the treatment of viruses and other disorders. In the current study, we investigated the effects of cytokinins 6-benzylaminopurin (BA), zeatin (ZT) and thidiazuron (TDZ) on plant growth and production of hypericins (pseudohypericin and hypericin) and hyperforin. Our data suggested that culture of H. perforatum in modified MS (Murashige and Skoog) medium, with a 50% reduction in ammonium nitrate and potassium nitrate, and supplemented with BA (0.44 μM) and indolebutyric acid (IBA, 0.049 μM), resulted in increased production of hypericins. Similar results were noted with H. sampsonii with minor changes to the medium (0.46 μM ZT and 0.049 μM IBA). There were approximately 2.95-, 2.62-fold increases in H. perforatum pseudohypericin and hypericin production by TDZ (0.45 μM) induction compared to the controls. No enhancement of hypericins and hyperforin production was elicited by TDZ in H. sampsonii. The elicitor methyl jasmonate (MJA, 50 μM) and its analog, 2,3-dihydroxypropyl jasmonate (DHPJA, 50 μM), were also used in H. perforatum and H. sampsonii shoot culture to increase secondary metabolite production, eliciting an increase in the production of hypericins and hyperforin. While leaf senescence and biomass inhibition were observed in cultures induced by MJA, no such effects were observed with DHPJA.  相似文献   
4.
Hairy root-regenerated clones of Hypericum perforatum L. grown in vitro similarly to those successfully adapted to ex vitro conditions showed phenotype features typical for plants transformed with Agrobacterium rhizogenes T-DNA. These included reduced apical dominance, increased branching, dwarfing and reduced fertility. Transgenic clones differed in ability to develop root system as a necessary condition for transfer to the soil. One of the profiling characters, capability of hypericin biosynthesis was altered as well. Dark glands as the sites of hypericin accumulation and/or synthesis exhibited significantly higher densities on both, leaves and petals of transgenic clones comparing to controls. In the genome of transgenic clones, rolABC genes were detected. Both clones harboured similar copy number of individual rol genes. However, copy numbers descended from rolA to rolC gene in both clones.  相似文献   
5.
Four precursors (l-phenylalanine, l-tryptophan, cinnamic acid and emodin) and one signal elicitor (methyl jasmonate, MeJA) were added to liquid cultures of Hypericum perforatum L. to study their effect on production of hyperforin and hypericins (pseudohypericin and hypericin). The addition of l-phenylalanine (75 to 100 mg l−1) enhanced production of hypericins, but hyperforin levels were decreased. Hypericin, pseudohypericin and hyperforin concentrations were all decreased when l-tryptophan (25 to 100 mg l−1) was added to the medium. However, addition of l-tryptophan (50 mg l−1) with MeJA (100 μM) stimulated hyperforin production significantly (1.81-fold) and resulted in an increased biomass. Cinnamic acid (25, 50 mg l−1) and emodin (1.0 to 10.0 mg l−1) each enhanced hyperforin accumulation in H. perforatum, but did not affect accumulation of hypericins.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号