首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
排序方式: 共有19条查询结果,搜索用时 62 毫秒
1.
An effective procedure for obtaining healthy shoots from nodal segments of Scrophularia yoshimurae is described. Nodal segments cultured on Murashige and Skoog's (MS) basal medium supplemented with 1.0 mg L(-1) benzyladenine (BA) and 0.2 mg L(-1) alpha-naphthaleneacetic acid (NAA) induced multiple shoots in conical flasks that differed in the way they were closed and sealed. Hermitically sealed culture vessels resulted in high hyperhydricity/vitrification. High concentrations of ethylene and CO2 were found to accumulate in these vessels. The hyperhydricity of the shoot cultures could be decreased by progressively ventilating the vessels. Exchange of gases was achieved by removing the Parafilm sealing without affecting sterility. This reduced the hyperhydricity rate and gave a good recovery of vitrified shoots, but resulted in decreased proliferation and a dehydration of proliferating nodal segments and the culture medium. The best number of normal shoots was observed when the parafilm was removed for gaseous exchange after four weeks of culture incubation. The results show that hyperhydricity in shoot cultures of S. yoshimurae could be prevented by sufficient gas exchange during culture.  相似文献   
2.
Hyperhydricity in regenerated pepper plants was monitored by the induction of the ER-luminal resident protein, as observed by immunoblotting. Immunoblotting of total protein using an anti-soybean BiP serum indicated that the induction and accumulation of an 80-kDa protein was related to BiP (Binding protein), a 78-kDa ER-resident molecular chaperone. The anti-BiP serum cross-reacted with an 80-kDa protein which was significantly induced by hyperhydricity. Based on similar molecular weight and immunological reactivity we concluded that the 80-kDa protein induced in hyperhydric plants is a BiP homologue. The ultrastructural organisation of leaves in non-hyperhydric and hyperhydric pepper (Capsicum annuum L.) plants was investigated with the aim of identifying the subcellular changes associated with this phenomenon. In non-hyperhydric leaves the chloroplasts of the palisade cells had normally developed thylakoids and grana and a low accumulation or absence of starch grains and plastoglobules. In the hyperhydric plants, however, the chloroplasts exhibited thylakoid disorganisation, low grana number, an accumulation of large starch grains and a low accumulation or absence of plastoglobules. Although the structure of mitochondria and peroxisomes did not change in hyperhydric plants, the number of peroxisomes did increase. Received: 23 July 1998 / Revision received: 26 February 1999 / Accepted: 17 March 1999  相似文献   
3.
The growth of black walnut shoot cultures was compared on media differing in nutrient formulation (MS, DKW, WPM, and 1/2X DKW), cytokinin type (ZEA, BA, and TDZ), and cytokinin concentration. On WPM and 1/2X DKW media, hyperhydricity was observed at frequencies of 60–100% compared with frequencies of 10–40% on the high-salt media (DKW and MS). All three cytokinins facilitated shoot regeneration from nodal cuttings, but recurrent elongation was only observed for BA (5–12.5 μM) and ZEA (5–25 μM) with mean shoot heights of 70–80 mm being possible after two culture periods (6–8 wk) for the fastest elongating lines. ZEA was effective across all six shoot lines with mean shoot heights of at least 35 mm over two culture periods, but two of the shoot lines were ‘nonresponsive’ to BA with mean shoot heights of <15 mm. In contrast, when shoot tip explants were used for culture multiplication, ZEA was the least effective cytokinin with proliferation frequencies of only 30–40%. The proliferation frequencies were twice as great (75–87%) for TDZ (0.05–0.1 μM), but most of the shoots regenerated were swollen or fasciated in morphology. High rates of proliferation (61–88%) were also possible using BA (12.5–25 μM), but axillary shoots did not elongate well, growing to heights of only 5–10 mm, on average, after 4–5 wk. Since the cytokinin types and concentrations required for high-frequency (>50%) axillary proliferation had adverse effects on the morphology and growth potential of the shoots, multiplication strategies based on the use of nodal cuttings are recommended.  相似文献   
4.
Micropropagation was assessed as an ex situ conservation strategy for the endangered Australian plant Pimelea spicata (Thymelaeaceae). Although regeneration of this species was achieved, several physiological problems were observed and examined. Explants of P. spicata had a higher multiplication rate on MS medium, than on ½ MS, but there was a significantly higher percentage of necrotic shoot tips on the higher salt medium. Increasing calcium concentration and gas exchange exacerbated shoot-tip necrosis. A number of hyperhydrated shoots were produced in all treatments, the cause of which could not be determined, although less hyperhydicity was observed in the ½ MS treatment. Shoots, rooted in vitro on ½ MS in the absence of plant growth regulators, were successfully acclimatised to greenhouse conditions, while direct rooting of microshoots using IBA gel treatment proved unsuccessful. This is the first report of tissue culture propagation of this endangered species.  相似文献   
5.
Hyperhydricity is a physiological disorder frequently affecting shoots propagated in vitro. Since it negatively affects shoot multiplication vigor, and impedes the successful transfer of micropropagated plants to in vivo conditions, hyperhydricity is a major problem in plant tissue culture. In commercial plant micropropagation, there are reports of up to 60% of cultured shoots or plantlets which demonstrate hyperhydricity, which reflects the pervasiveness of this problem. The phenomenon has been correlated to water availability, microelements, and/or hormonal imbalance in the tissue culture. In this study, the ultrastructure and the characteristics of reactive oxygen species between hyperhydric and normal shoots of garlic were studied. We observed that in some cells of hyperhydric tissues, the intranuclear inclusion was separated, the mitochondrion was swollen and its intracristae had splits, the organelles were compressed against the cell wall, and the chloroplasts and intergranal thylakoids were also compressed. Additionally, the content of chlorophyll and soluble protein in hyperhydric shoots decreased significantly. For instance, chlorophyll a decreased 43.61%, chlorophyll b decreased 49.29%, chlorophyll a+b decreased 48.10%, and soluble protein dropped 47.36%. In contrast, the O2 generation rate and H2O2 level increased 45.36% and 63.98%, respectively, obviously higher than the normal shoots. Lipoxygenase activity and malondialdehyde content in the hyperhydric shoots increased significantly, while the electrolyte leakage rose, indicating a serious membrane lipid peroxidatic reaction. Superoxide dismutase, peroxidase, catalase, glutathione peroxidase, and ascorbate peroxidase activities in hyperhydric tissue were all significantly higher than in normal leaf tissue. The antioxidant metabolism demostrated a close connection between hyperhydricity and reactivated oxygen species.  相似文献   
6.
In vitro propagated plants of Mammillaria gracilis Pfeiff. (Cactaceae) develop calli without any exogenous growth regulators. This habituated tissue spontaneously regenerates morphologically normal as well as hyperhydric shoots. In this study, a possible involvement of activated oxygen metabolism in habituation and hyperhydricity in in vitro propagated plants of Mammillaria gracilis Pfeiff. (Cactaceae) was investigated. Significantly higher malondialdehyde (MDA) and carbonyl contents as well as hydrogen peroxide (H2O2) production were observed in habituated callus (HC), hyperhydric regenerated shoots (HS), and tumors (TT) in comparison to normal regenerated shoots (NS). Lipoxygenase (LOX) activity showed a similar trend, with a clear increase in activity in HC and HS. The activities of antioxidative enzymes, namely, peroxidase (POX), ascorbate peroxidase (APX), and catalase (CAT), were also higher in HC, HS, and TT, whereas an increase in superoxide dismutase (SOD) activity was observed in HC and HS. The majority of antioxidative isoenzymes were common to all cactus tissues, although a few tissue-specific bands were noticed. Significant decreases in phenylalanine ammonia lyase (PAL) activity, total phenolic content, and lignification were found in HS, HC, and TT in comparison to NS. Our results showed the appearance of a prominent oxidative stress in HC, HS, and TT as well as a strong induction of the antioxidant system indicating that activated oxygen metabolism could be involved in habituation and hyperhydricity and linked to the loss of tissue organization in M. gracilis. B. Balen and M. Tkalec contributed equally to this work.  相似文献   
7.
Adventitious shoots induced from maca calli on induction media without rare earth elements (REE) had higher water content and lower soluble protein concentration when compared with shoots sprouted from maca seeds. Due to lower activities of antioxidative enzymes, there were higher concentrations of H2O2 and malonyldialdehyde (MDA) in adventitious shoots than those in seed shoots. When La3+, Ce3+ and Nd3+ (0.04 mM to 0.1 mM) were added to induction media, induction rates of the adventitious shoots were only affected slightly, but hyperhydricity rates were significantly reduced. La3+, Ce3+ or Nd3+ enhanced the activities of antioxidative enzymes in adventitious shoots, e.g. peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR). When the concentrations of La3+, Ce3+ and Nd3+ were 0.1 mM, the oxygen stress in adventitious shoots was decreased to levels similar to seed shoots, where most adventitious shoots grew normally.  相似文献   
8.
Concepts in plant stress physiology. Application to plant tissue cultures   总被引:1,自引:0,他引:1  
Because the term stress is used, most often subjectively, with variousmeanings, this paper first attempts to clarify the physiological definition,andthe appropriate terms as responses in different situations. The flexibility ofnormal metabolism allows the development of responses to environmental changeswhich fluctuate regularly and predictably over daily and seasonal cycles. Thusevery deviation of a factor from its optimum does not necessarily result instress. Stress begins with a constraint or with highly unpredictablefluctuations imposed on regular metabolic patterns that cause bodily injury,disease, or aberrant physiology. Stress is the altered physiological conditioncaused by factors that tend to alter an equilibrium. Strain is any physicaland/or chemical change produced by a stress, i.e. every established condition,which forces a system away from its thermodynamic optimal state. The papersecondly summarises the Strasser's state-change concept which is preciselythat suboptimality is the driving force for acclimation (genotype level) oradaptation (population level) to stress. The paper continues with the actualknowledge on the mechanisms of stress recognition and cell signalling. Briefly:plasma membranes are the sensors of environmental changes; phytohormones andsecond messengers are the transducers of information from membranes tometabolism; carbon balance is the master integrator of plant response; betwixtand between, some genes are expressed more strongly, whereas others arerepressed. Reactive oxygen species play key roles in up- and down-regulation ofmetabolism and structure. The paper shows finally that the above concepts canbeapplied to plant tissue cultures where the accumulating physiological andgenetical deviations (from a normal plant behaviour) are related to thestressing conditions of the in vitro culture media and ofthe confined environment. The hyperhydrated state of shoots and the cancerousstate of cells, both induced under conditions of stress in invitro cultures, are identified and detailed, because they perfectlyillustrate the stress-induced state-change concept. It is concluded that stressresponses include either pathologies or adaptive advantages. Stress may thuscontain both destructive and constructive elements : it is a selection factoraswell as a driving force for improved resistance and adaptive evolution.  相似文献   
9.
The process of hyperhydricity in tissue cultured plants of Aloe polyphylla is affected by both applied cytokinins (CKs) and the type of gelling agent used to solidify the medium. Shoots were grown on media with agar or gelrite and supplemented with different concentrations of N6-benzyladenine (BA) or zeatin (0, 5 and 15 μM). Endogenous CKs were measured in in vitro regenerants after an 8-weeks cycle to examine whether the hyperhydricity-inducing effect of exogenous CKs and gelling agents is associated with changes in the endogenous CK content. On media with agar a reduction in hyperhydricity occurred, while the gelrite treatment produced both normal and hyperhydric shoots (HS). The content of endogenous CKs, determined by HPLC-mass spectrometry, in the shoots grown on CK-free media comprised isopentenyladenine-, trans-zeatin- and cis-zeatin-type CKs. The application of exogenous CKs resulted in an increase in the CK content of the shoots. Following application of zeatin, dihydrozeatin-type CKs were also detected in the newly-formed shoots. Application of BA to the media led to a transition from isoprenoid CKs to aromatic CKs in the shoots. Shoots grown on gelrite media contained higher levels of endogenous CKs compared to those on agar media. Total CK content of HS was higher than that of normal shoots grown on the same medium. We suggest that the ability of exogenous CKs and gelrite to induce hyperhydricity in shoots of Aloe polyphylla is at least partially due to up-regulation of endogenous CK levels. However, hyperhydricity is a multifactor process in which different factors intervene.  相似文献   
10.
The content of oxidized and reduced pyridine nucleotides and some enzymatic activities of the oxidative pentose phosphate and glycolytic pathways were compared in normal (NS, growing on agar) and hyperhydric (HS, growing on gelrite) shoots of Prunus aviumL. after 4 weeks of in vitro culture. The chlorophyll fluorescence from leaves and the redox capacity of the plasma membrane (reduction of exogenously added ferricyanide) of both types of shoots were recorded. The pool of oxidized and reduced pyridine nucleotides was lower in HS than in NS. These results suggested a reduced metabolism of HS in comparison to normal ones. This hypothesis was also supported by other observations. First, chlorophyll fluorescence measurements showed a lower chlorophyll content and a slight reduction of the photosynthetic capacity in HS. Second, the low activity of some enzymes of oxidative pentose phosphate pathway (OPP) and glycolysis indicated a decline of these biochemical pathways in HS with the consequence of a reduced production of chemical energy in the form of NAD(P)H and ATP. Finally, the lower reduction of ferricyanide by HS suggested a lower rate of redox reactions at the level of the plasma membrane of these shoots in comparison to NS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号