首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2015年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
In situ immobilization and phytoextraction techniques have been used for remediation of Pb and Cd polluted soils. Three rates (0.25, 0.5 and 1.0%) of seven immobilizing agents (cement, slag, phosphate rock, bitumen, Fe- and Al-gels, and δ-MnO2) were tested on three soils containing various levels of Pb (48–192.0 ug/g) and Cd (0.75–3.45 ug/g). All immobilizing agents reduced the plant available Pb and Cd as extracted by DTPA (diethylenetriaminepentaacetic acid). The effectiveness of the various agents in immobilizing Pb and Cd followed the descending order: bitumen > cement > slag > Fe-gel > Al-gel > phosphate rock > δ -MnO2. Cement and phosphate rock fixed Pb and Cd mainly in the carbonate form, whereas the slag, bitumen, Fe-gel, Al-gel and δ -MnO2 fixed the metals mainly in the oxide form.

The results of pot experiment proved the high ability of barnyard grass (Echinnochloa stagninum) to accumulate elevated amounts of Pb and Cd (ranging from 291–2421 and 6.1–45.9 ug metal/g dry matter, respectively). These amounts are higher than those reported for hyperaccumulators, particularly for Pb. The amounts of Pb and Cd removed by barnyard grass represent, on average, 46 and 72% of their initial total contents in the soils, respectively. These results proved that, without any other soil treatments, barnyard grass is highly efficient in removing considerable amounts of Pb and Cd from polluted soil within a reasonably short period of time. Therefore, use of barnyard grass for the phytoremediation of Pb and Cd polluted soils is feasible and recommended as an environmentally safe and cheap method. The most significant finding of this study is to name the barnyard grass as an efficient lead accumulator plant.  相似文献   

2.
From a number of wild plant species growing on soils highly contaminated by heavy metals in Eastern Spain, Nicotiana glauca R. Graham (shrub tobacco) was selected for biotechnological modification, because it showed the most appropriate properties for phytoremediation. This plant has a wide geographic distribution, is fast-growing with a high biomass, and is repulsive to herbivores. Following Agrobacterium mediated transformation, the induction and overexpression of a wheat gene encoding phytochelatin synthase (TaPCS1) in this particular plant greatly increased its tolerance to metals such as Pb and Cd, developing seedling roots 160% longer than wild type plants. In addition, seedlings of transformed plants grown in mining soils containing high levels of Pb (1572 ppm) accumulated double concentration of this heavy metal than wild type. These results indicate that the transformed N. glauca represents a highly promising new tool for use in phytoremediation efforts.  相似文献   
3.
Specific plant species that can take up and accumulate abnormally high concentrations of elements in their aboveground tissues are referred to as “hyperaccumulators”. The use of this term is justified in the case of enormous element-binding capacity of plants growing in their natural habitats and showing no toxicity symptoms. An increasing interest in the study of hyperaccumulators results from their potential applications in environmental biotechnology (phytoremediation, phytomining) and their emerging role in nanotechnology. The highest number of plant species with confirmed hyperaccumulative properties has been reported for hyperaccumulators of nickel, cadmium, zinc, manganese, arsenic and selenium. More limited data exist for plants accumulating other elements, including common pollutants (chromium, lead and boron) or elements of commercial value, such as copper, gold and rare earth elements. Different approaches have been used for the study of hyperaccumulators – geobotanical, chemical, biochemical and genetic. The chemical approach is the most important in screening for new hyperaccumulators. This article presents and critically reviews current trends in new hyperaccumulator research, emphasizing analytical methodology that is applied in identification of new hyperaccumulators of trace elements and its future perspectives.  相似文献   
4.
Zinc is an essential trace element, necessary for plants, animals, and microorganisms. Zn is required for many enzymes as a catalytic cofactor, for photosynthetic CO2 fixation, and in maintaining the integrity of bio-membranes. However, Zn is potentially toxic when accumulated beyond cellular needs. Phytoextraction technique, which is a part of phytoremediation, has opened new avenues for remediation of Zn-contaminated places. Hyperaccumulators like Thlaspi caerulescens and Arabidopsis halleri have been identified, which can accumulate up to 40,000 mg kg?1 Zn in the aerial parts of the plant body. Carboxylic acids, primarily malate, citrate, and oxalate, and amino acids are found to play an important role in Zn hyperaccumulation. Transmembrane metal transporters are assumed to play a key role in Zn metal uptake, xylem loading, and vacuolar sequestration. Members of CDF (cation diffusion facilitator) and ZIP (zinc-regulated transporter, iron-regulated transporter like protein) family have been implicated in Zn-metal-tolerance mechanisms. A potential metal-binding motif, containing multiple histidine residues, is found in the variable regions of almost all of the ZIP family, including ZIP1, ZIP2, ZIP4, ZRT1, and ZRT2. Overexpression of some Zn metal transporter genes like TcZNT1 (Thlaspi caerulescens Zn transporter1), TcHMA4 (Thlaspi caerulescens heavy metal ATPase) in Thlaspi caerulescens, AhMTP1;3 (Arabidopsis halleri metal transporter1;3) in Arabidopsis halleri, and PtdMTP1(Poplar metal transporter1) from a hybrid poplar confer Zn hypertolerance in Thlaspi, Arabidopsis, and Poplar plant species.  相似文献   
5.
Two arsenic (As) hyperaccumulators (Pteris multifida and Pteris vittata) and a non-hyperaccumulator (Pteris semipinnata) were exposed to different As concentrations under hydroponic conditions. Five flavonoids in these fern species were determined by high-performance liquid chromatography (HPLC). Flavonoid production in P. multifida and P. semipinnata was also studied in 0 and 20 mg As L−1 treatments at different cultivation times. No significant differences were observed regarding the contents of quercetin, isoquercitrin and kaempferol in the fronds. The contents of rutin, quercetin, kaempferol and total flavonoids were also not significantly different in the roots of the three fern species under the same As treatment. However, significant differences were observed in contents of rutin, quercetin, hyperin, kaempferol and total flavonoids over time in the 20 mg As L−1 treatment. In general, the changes in flavonoid contents in the As hyperaccumulators were not directly related to As accumulation.  相似文献   
6.
Phytoremediation of mine tailings in temperate and arid environments   总被引:9,自引:0,他引:9  
Phytoremediation is an emerging technology for the remediation of mine tailings, a global problem for which conventional remediation technologies are costly. There are two approaches to phytoremediation of mine tailings, phytoextraction and phytostabilization. Phytoextraction involves translocation of heavy metals from mine tailings to the plant shoot biomass followed by plant harvest, while phytostabilization focuses on establishing a vegetative cap that does not shoot accumulate metals but rather immobilizes metals within the tailings. Phytoextraction is currently limited by low rates of metal removal which is a combination of low biomass production and insufficiently high metal uptake into plant tissue. Phytostabilization is currently limited by a lack of knowledge of the minimum amendments required (e.g., compost, irrigation) to support long-term plant establishment. This review addresses both strategies within the context of two specific climate types: temperate and arid. In temperate environments, mine tailings are a source of metal leachates and acid mine drainage that contaminate nearby waterways. Mine tailings in arid regions are subject to eolian dispersion and water erosion. Examples of phytoremediation within each of these environments are discussed. Current research suggests that phytoextraction, due to high implementation costs and long time frames, will be limited to sites that have high land values and for which metal removal is required. Phytostabilization, due to lower costs and easier implementation, will be a more commonly used approach. Complete restoration of mining sites is an unlikely outcome for either approach.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号