首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2009年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Protein oxidation is thought to contribute to a number of inflammatory diseases, hence the development of sensitive and specific analytical techniques to detect oxidative PTMs (oxPTMs) in biological samples is highly desirable. Precursor ion scanning for fragment ions of oxidized amino acid residues was investigated as a label‐free MS approach to mapping specific oxPTMs in a complex mixture of proteins. Using HOCl‐oxidized lysozyme as a model system, it was found that the immonium ions of oxidized tyrosine and tryptophan formed in MS2 analysis could not be used as diagnostic ions, owing to the occurrence of isobaric fragment ions from unmodified peptides. Using a double quadrupole linear ion trap mass spectrometer, precursor ion scanning was combined with detection of MS3 fragment ions from the immonium ions and collisionally‐activated decomposition peptide sequencing to achieve selectivity for the oxPTMs. For chlorotyrosine, the immonium ion at 170.1 m/z fragmented to yield diagnostic ions at 153.1, 134.1, and 125.1 m/z, and the hydroxytyrosine immonium ion at 152.1 m/z gave diagnostic ions at 135.1 and 107.1 m/z. Selective MS3 fragment ions were also identified for 2‐hydroxytryptophan and 5‐hydroxytryptophan. The method was used successfully to map these oxPTMs in a mixture of nine proteins that had been treated with HOCl, thereby demonstrating its potential for application to complex biological samples.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号