首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  国内免费   7篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   8篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
  1992年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
1.
The efficacy of 2‐furfuraldehyde for control of Sclerotium rolfsii was studied in laboratory and greenhouse experiments. Mycelial growth of the fungus was reduced proportionally with concentrations of 0.1–0.5 ml furfuraldehyde l‐1 agar medium, and viability of sclerotia diminished on exposure to 2‐furfuraldehyde vapours. Detectable populations of bacteria and fungi, including Trichoderma spp., were reduced significantly (9=0.05) when furfuraldehyde was added to the agar used for soil dilution plates of untreated soil. Repeated treatments of natural soil with the fumigant significantly increased populations of Trichoderma spp. and bacteria, but diminished numbers of actinomycetes. Increasing dosages applied to soil artificially infested with S. rolfsii caused a reduction of disease on lentil, Lens culinaris. Results indicate that the compound, when applied to field soil, changes the composition of soil microflora and has potential for integrated control of S. rolfsii.  相似文献   
2.
The life-history ofNeurospora in nature has remained largely unknown. The present study attempts to remedy this. The following conclusions are based on observation ofNeurospora on fire-scorched sugar cane in agricultural fields, and reconstruction experiments using a colour mutant to inoculate sugar cane burned in the laboratory. The fungus persists in soil as heat- resistant dormant ascospores. These are activated by a chemical(s) released into soil from the burnt substrate. The chief diffusible activator of ascospores is furfural and the germinating ascospores infect the scorched substrate. An invasive mycelium grows progressively upwards inside the juicy sugar cane and produces copious macroconidia externally through fire- induced openings formed in the plant tissue, or by the mechanical rupturing of the plant epidermal tissue by the mass of mycelium. The loose conidia are dispersed by wind and/or foraged by microfauna. It is suggested that the constant production of macroconidia, and their ready dispersal, serve a physiological role: to drain the substrate of minerals and soluble sugars, thereby creating nutritional conditions which stimulate sexual reproduction by the fungus. Sexual reproduction in the sugar- depleted cellulosic substrate occurs after macroconidiation has ceased totally and is favoured by the humid conditions prevailing during the monsoon rains. Profuse micro-conidiophores and protoperithecia are produced simultaneously in the pockets below the loosened epidermal tissue. Presumably protoperithecia are fertilized by microconidia which are possibly transmitted by nematodes active in the dead plant tissue. Mature perithecia release ascospores in situ which are passively liberated in the soil by the disintegration of the plant material and are, apparently, distributed by rain or irrigation water.  相似文献   
3.
Thiophene bioisosteres of potent GluN2B receptor negative allosteric modulators were prepared and evaluated pharmacologically. The five-step synthesis of 4,5,7,8-tetrahydro[7]annuleno[b]thiophen-6-one (10) was considerably improved by carboxylation of thiophene-3-carboxylic acid (8) in the first reaction step. Reductive amination and alkylation led to three homologous series of secondary and tertiary phenylalkylamines 5, 11 and 12. Metalation, reaction with 1-formylpiperidine and subsequent reduction provided hydroxymethyl derivatives 15 and 16, which had been designed as bioisosteres of phenols. 2-Bromo derivatives 18 were obtained by bromination of ketone 10 with NBS and subsequent reductive amination. High GluN2B affinity was achieved with [7]annuleno[b]thiophenes bearing a 3-phenylpropylamino or 4-phenylbutylamino moiety (e.g. 5c: Ki = 5.9 nM; 11d: Ki = 9.0 nM). Tertiary ethylamines 12 showed lower GluN2B affinity than tertiary methylamines 11 or secondary amines 5 (e.g. 5c: Ki = 5.9 nM; 11c: Ki = 6.0; 12c: Ki = 51 nM). A Br-atom or a hydroxymethyl moiety in 2-position were less tolerated by the GluN2B receptor. Very similar relationships between the structure and GluN2B affinity and structure and σ affinity, in particular σ2 affinity, were detected. A slight preference for the ifenprodil binding site of GluN2B receptors over σ1 and σ2 receptors was found for methylamines 11c (≈2-fold) and 11d (≈1.5–2-fold) as well as for bromo derivative 18c (≈3-fold).  相似文献   
4.
【背景】纤维素是生物转化解决能源问题的主要原料之一,其水解物中存在严重影响抑制菌株生长的糠醛,需脱毒才可应用于发酵,提高菌株耐受性是解决纤维素水解液实际生产应用的关键。【目的】酿酒酵母(Saccharomyces cerevisiae)是主要的纤维素水解液发酵工业菌株,但糠醛耐受性较低,通过分子改造获得具有高糠醛耐受性的菌株。【方法】利用新获得的产甘油假丝酵母(Candidaglycerinogenes)的相关抗逆转录因子CgSTB5、CgSEF1和CgCAS5,通过分子技术进行S.cerevisiae改造,考察其对酿酒酵母糠醛耐受性的影响,并尝试应用于未脱毒纤维素乙醇发酵。【结果】单个表达CgSTB5和CgSEF1的酿酒酵母,通过菌株点板实验表明菌株的糠醛耐受性提高25%以上,并且摇瓶发酵结果显示糠醛降解性能明显提高,生长延滞期明显缩短,S.cerevisiae W303/p414-CgSTB5的未脱毒纤维素乙醇发酵生产效率提高12.5%左右。【结论】转录因子CgSTB5和CgSEF1均能对提高酿酒酵母糠醛耐受性起到重要作用,并且有助于提高酿酒酵母菌株未脱毒纤维素乙醇发酵性能。  相似文献   
5.
王丹  王洪辉  王競  汪楠  张杰  邢建民 《生物工程学报》2013,29(10):1463-1472
利用可再生生物质特别是木质纤维素水解液来生产平台化合物丁二酸,是目前研究的热点。虽然许多研究者相继报道了木质纤维素水解液对菌株生长和丁二酸生产存在一定抑制作用,但并没有水解液中各种抑制物对菌株影响的相关动力学研究及机理研究。我们选择了两种代表性木质纤维素水解液抑制物,即糠醛和5-羟甲基糠醛,系统研究了它们对大肠杆菌的生长和丁二酸生产的影响。结果表明:糠醛和5-羟甲基糠醛的初始抑制浓度均为0.8 g/L。当糠醛浓度大于6.4 g/L,5-羟甲基糠醛浓度大于12.8 g/L时,菌株生长完全受到抑制。在最高耐受浓度下,糠醛的存在使菌株生物量比对照菌株下降77.8%,丁二酸产量下降36.1%。5-羟甲基糠醛的存在使菌株生物量比对照菌株降低13.6%,丁二酸产量降低18.3%。糠醛和5-羟甲基糠醛具有明显的协同作用。体外酶活测定表明丁二酸生产途径中关键酶磷酸烯醇式丙酮酸羧化酶、苹果酸脱氢酶、富马酸还原酶均受糠醛和5-羟甲基糠醛抑制。研究结果对丁二酸生产用纤维素水解液的预处理和脱毒工艺开发具有指导作用,有利于实现丁二酸发酵生产的工业化。  相似文献   
6.
We constructed a plasmid that expresses FLO11 encoding a cell surface glycoprotein of Saccharomyces cerevisiae under the control of a constitutive promoter. This plasmid conferred pellicle-forming ability on the non-pellicle-forming industrial strain of S. cerevisiae at the air–liquid interface of the glucose-containing liquid medium. The induced pellicle-forming cells exhibited tolerance to furfural, which is a key toxin in lignocellulosic hydrolysates, in ethanol production.  相似文献   
7.
The increasing demand for freshwater and the continued depletion of available resources has led to a deepening global water crisis. Significant water consumption required by many biotechnological processes contributes to both the environmental and economic cost of this problem. Relatively few biocatalytic processes have been developed to utilize the more abundant supply of seawater, with seawater composition and salinity limiting its use with many mesophilic enzymes. We recently reported a salt tolerant ω‐transaminase enzyme, Ad2‐TAm, isolated from the genome of a halophilic bacterium, Halomonas sp. CSM‐2, from a Triassic period salt mine. In this study we aimed to demonstrate its applicability to biocatalytic reactions carried out in a seawater‐based medium. Ad2‐TAm was examined for its ability to aminate the industrially relevant substrate, furfural, in both seawater and freshwater‐based reaction systems. Furfural was aminated with 53.6% conversion in a buffered seawater system, displaying improved function versus freshwater. Ad2‐TAm outperformed the commonly employed commercial ω‐TAms from Chromobacterium violaceum and Vibrio fluvialis, both of which showed decreased conversion in seawater. Given the increasingly precarious availability of global freshwater, such applications of enzymes from halophiles have the ability to reduce demand for freshwater in large‐scale industrial processes, delivering considerable environmental and economic benefits.  相似文献   
8.
The environmental carcinogen glycidaldehyde (GDA) and therapeutic chloroethylnitrosoureas (CNUs) can form hydroxymethyl etheno and ring-saturated ethano bases, respectively. The mutagenic potential of these adducts relies on their miscoding properties and repair efficiency. In this work, the ability of human thymine-DNA glycosylase (TDG) to excise 8-(hydroxymethyl)-3,N(4)-ethenocytosine (8-hm-varepsilonC) and 3,N(4)-ethanocytosine (EC) was investigated and compared with varepsilonC, a known substrate for TDG. When tested using defined oligonucleotides containing a single adduct, TDG is able to excise 8-hm-varepsilonC but not EC. The 8-hm-varepsilonC activity mainly depends on guanine pairing with the adduct. TDG removes 8-hm-varepsilonC less efficiently than varepsilonC but its activity can be significantly enhanced by human AP endonuclease 1 (APE1), a downstream enzyme in the base excision repair. TDG did not show any detectable activity toward EC when placed in various neighboring sequences, including the 5'-CpG site. Molecular modeling revealed a possible steric clash between the non-planar EC exocyclic ring and residue Asn 191 within the TDG active site, which could account for the lack of TDG activity toward EC. TDG was not active against the bulkier exocyclic adduct 3,N(4)-benzethenocytosine, nor the two adenine derivatives with same modifications as the cytosine derivatives, 7-hm-varepsilonA and EA. These findings expand the TDG substrate range and aid in understanding the structural requirements for TDG substrate specificity.  相似文献   
9.
The electron acceptors acetoin, acetaldehyde, furfural, and 5-hydroxymethylfurfural (HMF) were added to anaerobic batch fermentation of xylose by recombinant, xylose utilising Saccharomyces cerevisiae TMB 3001. The intracellular fluxes during xylose fermentation before and after acetoin addition were calculated with metabolic flux analysis. Acetoin halted xylitol excretion and decreased the flux through the oxidative pentose phosphate pathway. The yield of ethanol increased from 0.62 mol ethanol/mol xylose to 1.35 mol ethanol/mol xylose, and the cell more than doubled its specific ATP production after acetoin addition compared to fermentation of xylose only. This did, however, not result in biomass growth. The xylitol excretion was also decreased by furfural and acetaldehyde but was unchanged by HMF. Thus, furfural present in lignocellulosic hydrolysate can be beneficial for ethanolic fermentation of xylose. Enzymatic analyses showed that the reduction of acetoin and furfural required NADH, whereas the reduction of HMF required NADPH. The enzymatic activity responsible for furfural reduction was considerably higher than for HMF reduction and also in situ furfural conversion was higher than HMF conversion.  相似文献   
10.
为了探索生物质焦对糠醛的吸附脱除特性,利用流化床快速热解制得稻壳焦,研究N2、CO2气氛下高温改性方式对稻壳焦孔隙特征与表面性质的影响,以及稻壳焦对糠醛的吸附脱除特性。采用元素分析、N2等温吸脱附、傅里叶红外、Boehm滴定等方法对稻壳焦的孔隙结构与表面化学特性进行表征。结果表明:原始的稻壳焦残留大量有机基团,孔隙结构较差;经N2和CO2高温改性后,稻壳焦表面的含氧酸性官能团大量分解,碱性官能团增加,比表面积和孔结构得到较好的扩充和优化,稻壳焦与糠醛的π-π色散力作用力增强。综合考虑π-π色散力和表面吸附位点的作用,CO2改性的稻壳焦表现出了最好的吸附效果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号