首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  2016年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 125 毫秒
1
1.
Two to three days after harvesting, cassava (Manihot esculenta Crantz) roots suffer from post-harvest physiological deterioration (PPD) when secondary metabolites are accumulated. Amongst these are hydroxycoumarins (e.g. scopoletin and its glucoside scopolin) which play roles in plant defence and have pharmacological activities. Some steps in the biosynthesis of these molecules are still unknown in cassava and in other plants. We exploit the accumulation of these coumarins during PPD to investigate the E-Z-isomerisation step in their biosynthesis. Feeding cubed cassava roots with E-cinnamic-3,2′,3′,4′,5′,6′-d5 acid gave scopoletin-d2. However, feeding with E-cinnamic-3,2′,3′,4′,5′,6′-d6 and E-cinnamic-2,3,2′,3′,4′,5′,6′-d7 acids, both gave scopoletin-d3, the latter not affording the expected scopoletin-d4. We therefore synthesised and fed with E-cinnamic-2-d1 when unlabelled scopoletin was biosynthesised. Solely the hydrogen (or deuterium) at C2 of cinnamic acid is exchanged in the biosynthesis of hydroxycoumarins. If the mechanism of E-Z-cinnamic acid isomerisation were photochemical, we would not expect to see the loss of deuterium which we observed. Therefore, a possible mechanism is an enzyme catalysed 1,4-Michael addition, followed by σ-bond rotation and hydrogen (or deuterium) elimination to yield the Z-isomer. Feeding the roots under light and dark conditions with E-cinnamic-2,3,2′,3′,4′,5′,6′-d7 acid gave scopoletin-d3 with no significant difference in the yields. We conclude that the E-Z-isomerisation stage in the biosynthesis of scopoletin and scopolin, in cassava roots during PPD, is not photochemical, but could be catalysed by an isomerase which is independent of light.  相似文献   
2.
This study evaluates the protective effects of 7‐hydroxycoumarin (7‐HC) on dyslipidemia and cardiac hypertrophy in isoproterenol (ISO) induced myocardial infarction (MI) in rats. Rats were pre‐ and co treated with 7‐HC (16 mg/kg) daily for 8 days. ISO (100 mg/kg) was subcutaneously injected into rats on seventh and eighth days to induce MI. Increased activity/levels of serum creatine kinase‐MB (CK‐MB), troponin‐T, plasma lipid peroxidation products, and altered levels of lipids in the serum and heart and serum lipoproteins were noted in ISO‐induced rats. ISO‐induced myocardial infarcted rats revealed increased hypertrophy (cardiac and left ventricular) and hepatic 3‐hydroxyl 3‐methylglutaryl‐coenzyme‐A reductase (HMG‐CoA reductase) activity. Pre and cotreatment with 7‐HC revealed significant protective effects on all the biochemical parameters evaluated. The in vitro study demonstrated its free radical scavenging property. Thus, 7‐HC protects ISO‐induced MI in rats by its free radical scavenging and antihyperlipidaemic and antihypertrophic properties.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号