首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2003年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Cytochrome P450 enzymes catalyze a number of oxidations in nature including the difficult hydroxylations of unactivated positions in an alkyl group. The consensus view of the hydroxylation reaction 10 years ago was that a high valent iron-oxo species abstracts a hydrogen atom from the alkyl group to give a radical that subsequently displaces the hydroxy group from iron in a homolytic substitution reaction (hydrogen abstraction-oxygen rebound). More recent mechanistic studies, as summarized in this review, indicated that the cytochrome P450-catalyzed "hydroxylation reaction" is complex, involving multiple mechanisms and multiple oxidants. In addition to the iron-oxo species, another electrophilic oxidant apparently exists, either the hydroperoxo-iron intermediate that precedes iron-oxo or iron-complexed hydrogen peroxide formed by protonation of the hydroperoxo-iron species on the proximal oxygen. The other electrophilic oxidant appears to react by insertion of OH(+) into a C-H bond to give a protonated alcohol. Computational work has suggested that iron-oxo can react through multiple spin states, a low-spin ensemble that reacts by insertion of oxygen, and a high-spin ensemble that reacts by hydrogen atom abstraction to give a radical.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号