首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   5篇
  国内免费   9篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   14篇
  2012年   8篇
  2011年   8篇
  2010年   9篇
  2009年   5篇
  2008年   8篇
  2007年   4篇
  2006年   9篇
  2005年   7篇
  2004年   7篇
  2003年   9篇
  2002年   5篇
  2001年   2篇
  2000年   8篇
  1999年   3篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1992年   2篇
  1991年   7篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   7篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   5篇
  1976年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有201条查询结果,搜索用时 15 毫秒
1.
2.
新船叶藓Neodolichomitra robusta(Broth.)Nog.为东亚特有种,其配子体茎尖细胞有丝分裂中期的染色体数为n=5,核型为K(n)=5=4V+1J或K(n)=5=4 m+1 sm,在核型分类中属于“2A”型。该研究结果为国内外首次报道。  相似文献   
3.
Summary Regeneration in hydra is considered to be morphallactic because it can occur in the absence of cell division. Whether DNA synthesis is required for regeneration or other repatterning events is not known. The question was investigated by blocking DNA synthesis with hydroxyurea and examining several developmental processes. Head regeneration, reversal of regeneration polarity and battery cell differentiation all took place in the absence of DNA synthesis. Hence, morphallactic regulation in hydra is independent of both DNA synthesis and mitosis.  相似文献   
4.
Summary From crude extracts ofHydra tissue a substance has been purified which prevents or retards the asexual reproduction by budding. The molecular weight is in the range of 300 to 1000 daltons. Inhibition of bud formation can be observed with concentrations equivalent to the extract from one hydra per 4 ml, that is, to a more than 10,000-fold dilution of the initial crude extract of a hydra. The purified inhibitor is active at a concentration of less than 10–8 M.Most of the inhibitor present inHydra is bound to cells. Within the cells the substance is mainly bound to particulate structures which sediment at 10,000 g. Its concentration is highest in the hypostomal region and decreases in the direction of the tentacles and peduncle. A second, lower, peak has been found in the basal disc. Treatment of the animals with a toxic agent (nitrogen mustard) which depletes the animal of interstitial cells, nematocytes and nematoblasts excludes the possibility that the inhibitor is present to any great extent in these cells. In conjunction with cell separation experiments by centrifugation of fixed cells in suspension, these results indicate that nerve cells are the most likely sites of storage of the inhibiting substance, although epithelial cells are not excluded as sources for the inhibitor.  相似文献   
5.
Summary Buds originate inHydra attenuata at a position 1/3 of the body length from the basal disc. The position with respect to the vertical axes is determined first and the position of the bud on the circumference of this budding region is specified later.Bud formation in hydra is reversibly prevented by pre-treatment with an inhibitor purified from hydra tissue (Berking, 1977). Some hours after the end of the treatment with the inhibitor, bud formation is resumed. From the starting or restarting point of development after the inhibitory treatment to the visible beginning of bud formation, 4 intermediary stages were distinguished on the basis of different responses to a second treatment with inhibitor. The pre0treatment is followed immediately by a period of maximal sensitivity to the inhibitor, which varies in length. At the conclusion of this phase the time interval required for the visible appearance of buds is fixed (12 h). In this and the following phase another application of inhibitor can cancel the entire preparatory process from the pre-treatment onwards. A transition to near complete resistance to inhibitor is the basis for defining a third phase. In a fourth phase, immediately before the evagination of the bud starts, the proesence of the inhibitor will again hinder the development. Upon removal of the inhibitor the suppressed buds will appear.  相似文献   
6.
Summary Fertilization in the freshwater hydrozoanHydra carnea has been examined by light, scanning and transmission electron microscopy. Sperm penetrate the jelly coat which covers the entire egg surface only at the site of the emission of the polar bodies. The egg surface exhibits a small depression, the so called fertilization pit at this site. Sperm-egg fusion takes place only at the bottom of the fertilization pit.Hydra sperm lack a structurally distinct acrosome and in most of the observed cases, fusion was initiated by contact between the membrane of the lateral part of the sperm head and the egg surfacce. Neither microvilli nor a fertilization cone are formed at the site of gamete fusion. The process of membrane fusion takes only a few seconds and within 1 to 2 min sperm head and midpiece are incorporated in the egg.Electron dense material is released by the egg upon insemination but cortical granule exocytosis does not occur and a fertilization envelope is not formed. The possible polyspermy-preventing mechanisms in hydrozoans are discussed. Hydra eggs can be cut into halves whereupon the egg membranes reseal at the cut edges and the fragments assume a spherical shape. Fragments containing the female pronucleus can be inseminated and exhibit normal cleavage and development. The observation that in such isolated parts the jelly coat will not fuse along the cut edges was used to determine its role in site-specific gamete fusion. These experiments indicate that site-specificity of gamete fusion can be attributed to special membrane properties at the fertilization pit.  相似文献   
7.
Gerke  I.  Zierold  K.  Weber  J.  Tardent  P. 《Hydrobiologia》1991,216(1):661-669
The spatial distribution of cations was assayed qualitatively and quantitatively in tentacular nematocytes of Hydra vulgaris in a scanning transmission electron microscope by means of x-ray microanalysis performed on 100 nm thick freeze-dried cryosections. The matrix of undischarged cysts (stenoteles, desmonemes and isorhizas) was found to contain mainly K+. In isolated nematocysts of Hydra the intracapsular potassium can be readily substituted by practically any other mono- and divalent cation (Na+, NH4 +, Mn2+, Co2+, Mg2+, Ca2+, Fe2+) all, except Fe2+, without impairing the ability of the cyst to respond to the chemical triggering with dithioerythritol or proteases. Monovalent cations increase the osmotically generated intracapsular pressure compared to divalent ions.  相似文献   
8.
Summary A substance was isolated from crude extracts of hydra that inhibits foot regeneration. This substance, the foot inhibitor, has a molecular weight of 500 daltons. It is a hydrophilic molecule, slightly basic in character and it has no peptide bonds. The pruified substance acts specifically and at concentrations lower than 10–7 M. At this low concentration only foot and not head regeneration is inhibited. Hydra are sensitive to purified foot inhibitor between the second and eight hour after initiation of foot regeneration by cutting. In normal animals the foot inhibitor is most likely produced by nerve cells. A substance with similar biological and physico-chemical properties is found in other coelenterates.  相似文献   
9.
Local self-activation and long ranging inhibition provide a mechanism for setting up organising regions as signalling centres for the development of structures in the surrounding tissue. The adult hydra hypostome functions as head organiser. After hydra head removal it is newly formed and complete heads can be regenerated. The molecular components of this organising region involve Wnt-signalling and β-catenin. However, it is not known how correct patterning of hypostome and tentacles are achieved in the hydra head and whether other signals in addition to HyWnt3 are needed for re-establishing the new organiser after head removal. Here we show that Notch-signalling is required for re-establishing the organiser during regeneration and that this is due to its role in restricting tentacle activation. Blocking Notch-signalling leads to the formation of irregular head structures characterised by excess tentacle tissue and aberrant expression of genes that mark the tentacle boundaries. This indicates a role for Notch-signalling in defining the tentacle pattern in the hydra head. Moreover, lateral inhibition by HvNotch and its target HyHes are required for head regeneration and without this the formation of the β-catenin/Wnt dependent head organiser is impaired. Work on prebilaterian model organisms has shown that the Wnt-pathway is important for setting up signalling centres for axial patterning in early multicellular animals. Our data suggest that the integration of Wnt-signalling with Notch-Delta activity was also involved in the evolution of defined body plans in animals.  相似文献   
10.
The effects of light regime, feeding regime and tentacle number on the zooplankton feeding capability of Hydra viridis were tested in the laboratory. Feeding was measured by exposing Hydra to a known volume of Artemia salina nauplii and recording the number captured and ingested. In all cases there was a correlation between the number of Artemia captured and the number ingested. H. viridis with 7 tentacles captured and ingested more Artemia than Hydra with 6 tentacles. However, changes in light and/or feeding regimes did not alter the number of tentacles/Hydra. Varying light and feeding regimes altered the number of Zoochlorellae/cell and Hydra growth rate. There was no effect on the number of Artemia captured or ingested and no effect on the percent ingestion of captured Artemia. These data suggest that, under these conditions, zooplankton feeding by H. viridis is independent of nutritional history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号