首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   1篇
  213篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   9篇
  2014年   25篇
  2013年   10篇
  2012年   13篇
  2011年   11篇
  2010年   17篇
  2009年   19篇
  2008年   16篇
  2007年   16篇
  2006年   11篇
  2005年   15篇
  2004年   12篇
  2003年   7篇
  2002年   8篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
排序方式: 共有213条查询结果,搜索用时 0 毫秒
1.
2.
Lyases cleave glycosaminoglycans (GAGs) in an eliminative mechanism and are important tools for the structural analysis and oligosaccharide preparation of GAGs. Various GAG lyases have been identified from terrestrial but not marine organisms even though marine animals are rich in GAGs with unique structures and functions. Herein we isolated a novel GAG lyase for the first time from the marine bacterium Vibrio sp. FC509 and then recombinantly expressed and characterized it. It showed strong lyase activity toward hyaluronan (HA) and chondroitin sulfate (CS) and was designated as HA and CS lyase (HCLase). It exhibited the highest activities to both substrates at pH 8.0 and 0.5 m NaCl at 30 °C. Its activity toward HA was less sensitive to pH than its CS lyase activity. As with most other marine enzymes, HCLase is a halophilic enzyme and very stable at temperatures from 0 to 40 °C for up to 24 h, but its activity is independent of divalent metal ions. The specific activity of HCLase against HA and CS reached a markedly high level of hundreds of thousands units/mg of protein under optimum conditions. The HCLase-resistant tetrasaccharide Δ4,5HexUAα1-3GalNAc(6-O-sulfate)β1-4GlcUA(2-O-sulfate)β1-3GalNAc(6-O-sulfate) was isolated from CS-D, the structure of which indicated that HCLase could not cleave the galactosaminidic linkage bound to 2-O-sulfated d-glucuronic acid (GlcUA) in CS chains. Site-directed mutagenesis indicated that HCLase may work via a catalytic mechanism in which Tyr-His acts as the Brønsted base and acid. Thus, the identification of HCLase provides a useful tool for HA- and CS-related research and applications.  相似文献   
3.
Hyaluronan is a rapidly turned over component of the vertebrate extracellular matrix. Its levels are determined, in part, by the hyaluronan synthases, HAS1, HAS2, and HAS3, and three hyaluronidases, HYAL1, HYAL2 and HYAL3. Hyaluronan binding proteins also regulate hyaluronan levels although their involvement is less well understood. To date, two genetic disorders of hyaluronan metabolism have been reported in humans: HYAL1 deficiency(Mucopolysaccharidosis IX) in four individuals with joint pathology as the predominant phenotypic finding and HAS2 deficiency in a single person having cardiac pathology. However, inherited disorders and induced mutations affecting hyaluronan metabolism have been characterized in other species. Overproduction of hyaluronan by HAS2 results in skin folding and thickening in shar-pei dogs and the naked mole rat, whereas a complete deficiency of HAS2 causes embryonic lethality in mice due to cardiac defects. Deficiencies of murine HAS1 and HAS3 result in a predisposition to seizures. Like humans, mice with HYAL1 deficiency exhibit joint pathology. Mice lacking HYAL2 have variably penetrant developmental defects, including skeletal and cardiac anomalies. Thus, based on mutant animal models, a partial deficiency of HAS2 or HYAL2 might be compatible with survival in humans, while complete deficiencies of HAS1, HAS3, and HYAL3 may yet be recognized.  相似文献   
4.
Low-molecular-weight hyaluronan (LMW-HA) has attracted much attention because of its many potential applications. Here, we efficiently produced specific LMW-HAs from sucrose in Bacillus subtilis. By coexpressing the identified committed genes (tuaD, gtaB, glmU, glmM, and glmS) and downregulating the glycolytic pathway, HA production was significantly increased from 1.01 g L−1 to 3.16 g L−1, with a molecular weight range of 1.40×106–1.83×106 Da. When leech hyaluronidase was actively expressed after N-terminal engineering (1.62×106 U mL−1), the production of HA was substantially increased from 5.96 g L−1 to 19.38 g L−1. The level of hyaluronidase was rationally regulated with a ribosome-binding site engineering strategy, allowing the production of LMW-HAs with a molecular weight range of 2.20×103–1.42×106 Da. Our results confirm that this strategy for the controllable expression of hyaluronidase, together with the optimization of the HA synthetic pathway, effectively produces specific LMW-HAs, and could also be used to produce other LMW polysaccharides.  相似文献   
5.
Various combinations of fluorescent dyes, polyacrylamide gels, and electrophoresis buffers were tested by fluorophore-assisted carbohydrate electrophoresis (FACE) for the purpose of analyzing sulfated and nonsulfated glycosaminoglycan (GAG) oligosaccharides in which disaccharides and low-molecular weight oligosaccharides were included. A nonionic fluorescent dye was found to be suitable for analyzing sulfated disaccharides derived from sulfated GAGs (e.g., chondroitin sulfate, dermatan sulfate) because sulfated disaccharides themselves had enough anionic potential for electrophoresis. The migration rates of chondroitin sulfate (CS) disaccharides in polyacrylamide gels were affected by the number of sulfate residues and the conformation of each disaccharide. When an anionic fluorescent dye, 8-aminonaphthalene-1,3,6-trisulfonic acid disodium salt (ANTS), was coupled with sulfated GAG oligosaccharides, nearly all of the conjugates migrated at the electrophoretic front due to the added anionic potential. Nonsulfated hyaluronan (HA) oligosaccharides (2-16 saccharides) were subjected to electrophoresis by coupling with a nonionic fluorescent dye, 2-aminoacridone (AMAC), but did not migrate in the order of their molecular size. Especially di-, tetra-, hexa-, and octasaccharides of HA migrated in the reverse order of their molecular size. HA/CS oligosaccharides were able to migrate in the order of their chain lengths by coupling with an anionic fluorescent dye in a nonborate condition.  相似文献   
6.
Cigarette smoke (CigS) exposure is associated with increased bronchial epithelial permeability and impaired barrier function. Primary cultures of normal human bronchial epithelial cells exposed to CigS exhibit decreased E-cadherin expression and reduced transepithelial electrical resistance. These effects were mediated by hyaluronan (HA) because inhibition of its synthesis with 4-methylumbelliferone prevented these effects, and exposure to HA fragments of <70 kDa mimicked these effects. We show that the HA receptor layilin is expressed apically in human airway epithelium and that cells infected with lentivirus expressing layilin siRNAs were protected against increased permeability triggered by both CigS and HA. We identified RhoA/Rho-associated protein kinase (ROCK) as the signaling effectors downstream layilin. We conclude that HA fragments generated by CigS bind to layilin and signal through Rho/ROCK to inhibit the E-cadherin gene and protein expression, leading to a loss of epithelial cell-cell contact. These studies suggest that HA functions as a master switch protecting or disrupting the epithelial barrier in its high versus low molecular weight form and that its depolymerization is a first and necessary step triggering the inflammatory response to CigS.  相似文献   
7.
The covalent transfer of heavy chains (HCs) from inter-α-inhibitor (IαI) to hyaluronan (HA) via the protein product of tumor necrosis factor-stimulated gene-6 (TSG-6) forms the HC-HA complex, a pathological form of HA that promotes the adhesion of leukocytes to HA matrices. The transfer of HCs to high molecular weight (HMW) HA is a reversible event whereby TSG-6 can shuffle HCs from one HA molecule to another. Therefore, HMW HA can serve as both an HC acceptor and an HC donor. In the present study, we show that transfer of HCs to low molecular weight HA oligosaccharides is an irreversible event where subsequent shuffling does not occur, i.e. HA oligosaccharides from 8 to 21 monosaccharide units in length can serve as HC acceptors, but are unable to function as HC donors. We show that the HC-HA complex is present in the synovial fluid of mice subjected to systemic and monoarticular mouse models of rheumatoid arthritis. Furthermore, we demonstrate that HA oligosaccharides can be used, with TSG-6, to irreversibly shuffle HCs from pathological, HMW HC-HA to HA oligosaccharides, thereby restoring HC-HA matrices from the inflamed joint to their normal state, unmodified with HCs. This process was also effective for HC-HA in the synovial fluid of human rheumatoid arthritis patients (in vitro).  相似文献   
8.
The effects of peroxynitrite on hyaluronan has been studied by using an integrated spectroscopical approach, namely electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and mass spectrometry (MS). The reaction has been performed with the polymer, the tetrasaccharide oligomer as well as with the monosaccharides N-acetylglucosamine and glucuronic acid. The outcome of the presence of molecular oxygen and carbon dioxide has been also evaluated. Although 1H-NMR and ESI-MS experiments did not revealed peroxynitrite-mediated modification of hyaluronan as well as of related saccharides, from spin-trapping EPR experiments it was concluded that peroxynitrite induce the formation of C-centered carbon radicals, most probably by the way of its hydroxyl radical-like reactivity. These EPR data support the oxidative pathway involved in the degradation of hyaluronan, a probable event in the development and progression of rheumatoid arthritis.  相似文献   
9.
The spatiotemporal distribution of hyaluronan (HA), a major constituent of the vertebrate extracellular matrix, was analyzed during early embryonic development of Xenopus laevis. This polysaccharide is abundantly present in ventricular structures such as the blastocoel, the archenteron as well as later on in the hepatic cavity, the brain ventricles and the developing heart. At the blastula stage, HA was detected in the extracellular matrix of the ecto- and mesodermal primordia. Shortly before gastrulation, it becomes enriched at the basal site of the superficial cell layer of the ectoderm. During gastrulation, enhanced synthesis of HA takes place in the involuting marginal zone, shortly before invagination starts, hence, resulting in a torus-like deposition in the deep layer of the equatorial mesodermal primordium. After gastrulation, HA appears to accumulate within the extracellular matrix demarcating the primary germ layers. During tailbud stages, it is found highly enriched in many mesodermal derivatives, e.g., in mesenchyme, the heart, precordal cartilage and the lung primordia. Furthermore, extracellular matrix of the ventral mesodermal cell layer in the trunk region and the immediate proximity of blood vessels contain high amounts of HA.  相似文献   
10.
The apicomplexan, obligate intracellular parasite Toxoplasma gondii orally infects humans and animals. The parasites cross the intestinal epithelium, invade leukocytes in the general circulation and then disseminate into the peripheral organs. The mechanism of extravasation of the infected leukocytes, however, remains poorly understood. It is known that adhesion of leukocytes to extracellular matrix (ECM) is an important factor in extravasation, and CD44 and ICAM-1 on the leukocyte surface are known receptors for hyaluronan (HA), an ECM component. In this study, we demonstrated up-regulation of CD44 and ICAM-1 expression on the surface of T. gondii-infected human monocytic THP-1 cells and fresh isolated human monocyte. T. gondii-infected THP-1 cells adhered more efficiently to immobilized HA than did non-infected cells. T. gondii-infected monocytes in the general circulation might preferentially adhere to the ECM and migrate out from blood vessels, so transporting parasites into the peripheral organs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号