首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   4篇
  国内免费   1篇
  2023年   4篇
  2022年   10篇
  2021年   4篇
  2020年   4篇
  2019年   12篇
  2018年   8篇
  2017年   3篇
  2016年   6篇
  2015年   8篇
  2014年   14篇
  2013年   22篇
  2012年   28篇
  2011年   16篇
  2010年   6篇
  2009年   5篇
  2008年   3篇
  2006年   5篇
  2005年   10篇
  2004年   5篇
  2003年   2篇
  1999年   2篇
  1983年   2篇
  1980年   2篇
  1978年   2篇
  1976年   2篇
  1973年   1篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
1.
The interaction of the 1α,25-dihydroxyvitamin D3 receptor with immobilized calf thymus DNA has been compared with its sedimentation properties on hypotonic sucrose gradients. Forty to sixty percent of total hormone:receptor complexes formed at 4 °C were retained by DNA-cellulose and could be eluted by 0.18 to 0.2 m KCl. In contrast, heating preparations to 25 °C rapidly and irreversibly converted receptor to a form which bound hormone and DEAE-cellulose normally, but was unable to associate with DNA. Similarly, the ability of receptor to aggregate to a 6 S species was labile at 25 °C. Stabilization of receptor in the DNA binding aggregating form was accomplished using Ca2+, Mg2+, Mn2+, or Na2MoO4 while several protease and phosphatase inhibitors were ineffective. An examination of DNA binding properties of aggregating and nonaggregating receptor forms revealed that only receptor competent to enter into aggregates could bind DNA suggesting that a functional nucleic acid binding site, and, hence, a nucleic acid interaction is necessary for aggregate formation. Consistent with this view, an RNA:receptor interaction appears to be involved in formation of the 6 S complex since removal of RNA by ribonuclease treatment or purification of receptor reduced aggregation, an effect that could be reversed by addition of purified RNA.  相似文献   
2.
The ultrastructural features of a purified fraction of Na+,K+-adenosine triphosphatase (ATPase) isolated from dog kidney medulla were compared with those of the initial crude microsomal fraction in the purification sequence. Although both fractions consist of vesicular structures, the purified fraction is more homogeneous with respect to overall size and intramembrane protein particle size and distribution. Polyacrylamide gel electrophoresis profiles of both fractions reveal multiple proteins in the microsomal fraction but only two in the final purified fraction. The membranes of the pure fraction comprised one class of particles roughly 95–120 Å in diameter which represent the in vitro configuration of Na+,K+-ATPase.  相似文献   
3.
4.
Huntington disease is a dominantly inherited neurodegenerative condition caused by polyglutamine expansion in the N terminus of the huntingtin protein (Htt). The first 17 amino acids (N17) of Htt play a key role in regulating its toxicity and aggregation. Both nuclear export and cytoplasm retention functions have been ascribed to N17. We have determined that N17 acts as a nuclear export sequence (NES) within Htt exon and when fused to yellow fluorescent protein. We have defined amino acids within N17 that constitute the nuclear export sequence (NES). Mutation of any of the conserved residues increases nuclear accumulation of Htt exon 1. Nuclear export of Htt is sensitive to leptomycin B and is reduced by knockdown of exportin 1. In HEK293 cells, NES mutations decrease overall Htt aggregation but increase the fraction of cells with nuclear inclusions. In primary cultured neurons, NES mutations increase nuclear accumulation and increase overall aggregation. This work defines a bona fide nuclear export sequence within N17 and links it to effects on protein aggregation. This may help explain the important role of N17 in controlling Htt toxicity.  相似文献   
5.
Lithium is an effective mood stabilizer that has been clinically used to treat bipolar disorder for several decades. Recent studies have suggested that lithium possesses robust neuroprotective and anti-tumor properties. Thus far, a large number of lithium targets have been discovered. Here, we report for the first time that HDAC1 is a target of lithium. Lithium significantly down-regulated HDAC1 at the translational level by targeting HDAC1 mRNA. We also showed that depletion of HDAC1 is essential for the neuroprotective effects of lithium and for the lithium-mediated degradation of mutant huntingtin through the autophagic pathway. Our studies explain the multiple functions of lithium and reveal a novel mechanism for the function of lithium in neurodegeneration.  相似文献   
6.
7.
Huntington disease is a neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) at the N-terminal of the huntingtin exon 1 protein. The detailed structure and the mechanism behind this aggregation remain unclear and it is assumed that the polyQ undergoes a conformational transition to the β-sheet structure when it aggregates. Investigating the misfolding of polyQ facilitates the determination of the molecular mechanism of aggregation and can potentially help in developing a novel approach to inhibit polyQ aggregation. Moreover, the flanking sequences of the polyQ region play a vital role in structural changes and the aggregation mechanism. We performed all-atom molecular dynamics simulations to gain structural insights into the aggregation mechanism using eight different models with glutamine repeat lengths Q27, Q27P11, Q34, Q35, Q36, Q40, Q50, and Q50P11. In the models without flanking polyPs, we noticed that the transformation of a random coil to β-sheet occurs when the number of Q increases. We also found that the flanking polyPs prevent aggregation by decreasing the probability of forming a β-sheet structure. When polyQ length increases, the 17 N-terminal flanking residues are more likely to adopt a β-sheet conformation from α-helix and coil. From our simulations, we suggest that at least 34 glutamines are required for initiating aggregation and 40 residues length is critical for the aggregation of huntingtin exon 1 protein for disease onset. This study provides structural insights into misfolding and the role of flanking sequences in huntingtin aggregation which will further help in developing therapeutic strategies for Huntington's disease.  相似文献   
8.
9.
Huntington's disease is an autosomal dominant disorder with degeneration of medium size striatal neurones. As the disease evolves, other neuronal populations are also progressively affected. A transgenic mouse model of the disease (R6/2) that expresses exon 1 of the human Huntington gene with approximately 150 CAG repeats has been developed, but GABA concentrations are reported to be normal in the striatum of these animals. In the present study, we analysed the status of GABAergic systems by means of glutamic acid decarboxylase (GAD)67 mRNA in situ hybridization in the brain of R6/2 transgenic mice and wild-type littermates. We show that GAD67 expression is normal in the striatum, cerebellum and septum but decreased in the frontal cortex, parietal cortex, globus pallidus, entopeduncular nucleus and substantia nigra pars reticulata of R6/2 mice. These data, which may, in part, account for the behavioural changes seen in these animals, indicate that at 12.5 weeks of age the pathological features seen in the mice differ from those seen in humans with Huntington's disease.  相似文献   
10.
S-Acylation is a major post-translational modification affecting several cellular processes. It is particularly important for neuronal functions. This modification is catalyzed by a family of transmembrane S-acyltransferases that contain a conserved zinc finger DHHC (zDHHC) domain. Typically, eukaryote genomes encode for 7–24 distinct zDHHC enzymes, with two members also harboring an ankyrin repeat (AR) domain at their cytosolic N termini. The AR domain of zDHHC enzymes is predicted to engage in numerous interactions and facilitates both substrate recruitment and S-acylation-independent functions; however, the sequence/structural features recognized by this module remain unknown. The two mammalian AR-containing S-acyltransferases are the Golgi-localized zDHHC17 and zDHHC13, also known as Huntingtin-interacting proteins 14 and 14-like, respectively; they are highly expressed in brain, and their loss in mice leads to neuropathological deficits that are reminiscent of Huntington''s disease. Here, we report that zDHHC17 and zDHHC13 recognize, via their AR domain, evolutionary conserved and closely related sequences of a [VIAP][VIT]XXQP consensus in SNAP25, SNAP23, cysteine string protein, Huntingtin, cytoplasmic linker protein 3, and microtubule-associated protein 6. This novel AR-binding sequence motif is found in regions predicted to be unstructured and is present in a number of zDHHC17 substrates and zDHHC17/13-interacting S-acylated proteins. This is the first study to identify a motif recognized by AR-containing zDHHCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号