首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2013年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.

Background

Amorphous silica nanoparticles (aSNPs) are used for various applications including food industry. However, limited in vivo studies are available on absorption/internalization of ingested aSNPs in the midgut cells of an organism. The study aims to examine cellular uptake of aSNPs (< 30 nm) in the midgut of Drosophila melanogaster (Oregon R+) owing to similarities between the midgut tissue of this organism and human and subsequently cellular stress response generated by these nanoparticles.

Methods

Third instar larvae of D. melanogaster were exposed orally to 1–100 μg/mL of aSNPs for 12–36 h and oxidative stress (OS), heat shock genes (hsgs), membrane destabilization (Acridine orange/Ethidium Bromide staining), cellular internalization (TEM) and apoptosis endpoints.

Results

A significant increase was observed in OS endpoints in the midgut cells of exposed Drosophila in a concentration- and time-dependent manner. Significantly increased expression of hsp70 and hsp22 along with caspases activation, membrane destabilization and mitochondrial membrane potential loss was also observed. TEM analysis showed aSNPs-uptake in the midgut cells of exposed Drosophila via endocytic vesicles and by direct membrane penetration.

Conclusion

aSNPs after their internalization in the midgut cells of exposed Drosophila larvae show membrane destabilization along with increased cellular stress and cell death.

General significance

Ingested aSNPs show adverse effects on the cells of GI tract of the exposed organism thus their industrial use as a food-additive may raise concern to human health.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号