首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2009年   1篇
  2005年   1篇
  2003年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Abstract Eighteen strains of Rhizobium including four species, R. leguminosarum, R. meliloti, R. loti and R. fredii , nine strains of Bradyrhizobium japonicum and three strains of Azorhizobium caulinodans contained putrescine and honospermidine as major polyamines. All these nodulating N2-fixing rhizobia lack spermidine. Spermidine and cadaverine were present only in a limited number of R. meliloti and B. japonicum . Polymanine-synthetic activity was not affected by the differences in ability to produce phytoxine (rhizobitoxine and dihydrorhizobitoxine) H2-uptake-hydrogenation in the organisms. Putrescine and homospermidine were major polyamined in a strain of Agrobacterium rhizogenes . All the eight strains of Agrobacterium tumefaciens as well as A. rubi, A. radiobacter and two other strains of A. rhizogenes contained putrescine and spermidine as major polyamines and homospermidine and spermine (and thermospermine) as minor polyamines.  相似文献   
2.
Nurhayati N  Ober D 《Phytochemistry》2005,66(11):1346-1357
Quinolizidine alkaloids are the most prominent group of alkaloids occurring in legumes, except for many members of the tribe Crotalarieae that accumulate pyrrolizidine alkaloids (PAs). To study the evolution of PA biosynthesis as a typical pathway of plant secondary metabolism in this tribe, we have searched for a cDNA coding for homospermidine synthase (HSS), the enzyme catalyzing the first specific step in this biosynthesis. HSS was shown to have been recruited from deoxyhypusine synthase (DHS) by independent gene duplication in several different angiosperm lineages during evolution. Except for a cDNA sequence coding for the DHS of Crotalaria retusa, no data is available concerning the origin of PA biosynthesis within this tribe of the Fabaceae. In addition to several pseudogenes, we have identified one functional DHS in C. scassellatii and two in C. juncea. Despite C. juncea plants under study being devoid of PAs, we have found that the two sequences of C. juncea are different with respect to their genomic organization, their tissue-specific expression, and their biochemical activities. Supported by the branching pattern of a maximum likelihood analysis of these sequences, they have been classified as "class 1" and "class 2" DHS. It remains open whether the duplicated DHS belonging to class 2 is involved in the biosynthesis of PAs.  相似文献   
3.
Abstract When the yeasts Saccharomyces cerevisiae, Candida albicans and Schizosaccharomyces pombe and the thermophilic bacteria Bacillus stearothermophilus and Bacillus acidocaldarius were cultured in the presence of homospermidine, a new compound accumulated in the cells within a few days. This compound was identified as aminopropylhomospermidine [NH2(CH2)3NH (CH2)4NH(CH2)4NH2] by gas chromatographymass spectrometry (GC-MS) and by the enzymatic cleavage method developed in our laboratories. This polyamine was not produced from homospermidine in Escherichia coli, Bacillus subtilis, Bacillus alkalophilus , or a eukaryotic protozoon, Tetrahymena pyriformis , none of which usually contains appreciable amounts of spermine. These findings suggest that the synthesis of aminopropylhomospermidine from homospermidine is mediated by spermine synthase.  相似文献   
4.
Polyamines in 12 species (19 strains) of sulfuroxidizing eubacteria belonging to Thiobacillus were analyzed. Their polyamine distribution patterns were separated into 5 types. T. neapolitanus contained putrescine alone (first type), T. intermedius, T. perometabolis, T. thioparus and a strain of T. denitrificans putrescine and 2-hydroxyputrescine (second type), T. acidophilus, T. organoparus, T. versutus, T. tepidarius, T. thiooxidans and T. ferrooxidans putrescine and spermidine (third type), T. novellus putrescine and homospermidine (fourth type), and a strain of T. denitrificans diaminopropane, putrescine and homospermidine (fifth type). Thus, thiobacilli could be rearranged into different taxonomic positions within Proteobacteria on the basis of polyamine distribution patterns.  相似文献   
5.
Abstract Polyamines were analyzed in 12 of N2-fixing aerobic eubacteria and other eubacteria, cyanobacteria, algae and ferns. sym -Homospermidine (homospermidine) was found to be widely distributed as a major polyamine in various N2-fixing eubacteria which belong to Azospirillum, Agromonas, Beijerinckia, Bradyrhizobium, Rhizobium and Xathnbacter . 3 species of Azotobater contained spermidine but not homospermidine, though they are N2-fixing eubactera. Homospermidine is also distributed in some eubacteria, i.e., the photosynthetic Rhodopseudomanas rutila and the sulfur-oxidizing Thiobacillus denitrificans , a cyanobacterium, Synechococcus sp., and in the cyanobacterium-symbiotic ferns, Azolla imbircatta and Azolla japonica .  相似文献   
6.
Deoxyhypusine synthase (DHS) is involved in the post-translational activation of the eukaryotic initiation factor 5A (eIF5A) and, as a side-reaction, catalyzes the formation of homospermidine if its substrate, the eIF5A precursor protein, is replaced by putrescine. Plant homospermidine synthase is assumed to be phylogenetically derived from DHS; it represents a DHS having lost its intrinsic activity. The enzyme is expressed in plants producing pyrrolizidine alkaloids where it catalyzes the formation of homospermidine the unique precursor of pyrrolizidine alkaloids. Here we show that 29 species randomly selected from 18 angiosperm families as well as a few other terrestrial plant species, all were able to produce small amounts of homospermidine. Basing on these results and in the context of literature on the occurrence of homospermidine in the organismic kingdoms, a universal occurrence of homospermidine is assumed and ubiquitous DHS is suggested to be responsible for its formation. The synthesis of homospermidine as an enzymatic by-product of an essential enzyme is discussed in respect to the evolutionary origin of homospermidine synthase and the biosynthetic pathway of pyrrolizidine alkaloids.  相似文献   
7.
In order to study the evolution of pathways of plant secondary metabolism, we use the biosynthesis of pyrrolizidine alkaloids (PAs) as a model system. PAs are regarded as part of the plant’s constitutive defense against herbivores. Homospermidine synthase (HSS) is the first specific enzyme of PA biosynthesis. The gene encoding HSS has been recruited from the gene encoding deoxyhypusine synthase (DHS) from primary metabolism at least four times independently during angiosperm evolution. One of these recruitments occurred within the monocot lineage. We have used the PA-producing orchid Phalaenopsis to identify the cDNAs encoding HSS, DHS and the substrate protein for DHS, i.e., the precursor of the eukaryotic initiation factor 5A. A cDNA identified from maize was unequivocally characterized as DHS. From our study of Phalaenopsis, several pseudogenes emerged, of which one was shown to be a “processed pseudogene”, and others to be transcribed. Sequence comparison of the HSS- and DHS-encoding sequences from this investigation with those of monocot species taken from the databases suggest that HSS and probably the ability to produce PAs is an old feature within the monocot lineage. This result is discussed with respect to the recent discovery of structural related PAs within grasses.  相似文献   
8.
Abstract Polyamines were analyzed in 4 species of genus Agrobacterium . Not only putrescine, spermidine and spermine, but also homospermidine and thermospermine were found in A. tumefaciens, A. radiobacter, A. rubi and A. rhizogenes . Trace amounts of aminopropylhomospermidine were also observed. Norspermidine and norspermine were formed from diamonorpropane added to the medium. Aminopropylcadaverine and its aminopropyl derivative(s) (aminopentylnorspermidine and N,N '-bis(3-aminopropyl) cadaverine) were produced from the supplemented cadaverine. A strain of A. rhizogenes normally contains only putrescine and homospermidine; no other diamines, triamines and tetraamines were synthesized.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号