首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
  2024年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2008年   6篇
  2007年   10篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
排序方式: 共有38条查询结果,搜索用时 390 毫秒
1.
Classical plant taxonomic ambiguities extend to the molecular level   总被引:1,自引:0,他引:1  
Summary The molecular evolution of cytochrome c from angiosperms is compared to that from vertebrates. On the basis of a cladistic analysis from 26 plant species, compared to that from 27 vertebrate species, we find that although the vertebrate sequences yield reasonably well-defined minimal trees that are congruent with the biological tree, the plant sequences yield multiple minimal trees that are not only highly incongruent with each other, but none of which is congruent with any reasonably biological tree. That is, the plant sequence set is much more homoplastic than that of the animal. However, as judged by the relative rate test, the extent of divergence, and degree of functional constraint, cytochrome c evolution in plants does not appear to differ from that of vertebrates.  相似文献   
2.
In two areas of phylogenetics, contrary predictions have been developed and maintained for character analysis and weighting. With regard to adaptation, many have argued that adaptive characters are poorly suited to phylogenetic analysis because of a propensity for homoplasy, while others have argued that complex adaptive characters should be given high weight because homoplasy in complex characters is unlikely. Similarly, with regard to correlated sets of characters, one point of view is that such sets should be collapsed into a single character-a single piece of phylogenetic evidence. Another point of view is that a suite of correlated characters should be emphasized in phylogenetics, again because recurrence of detailed similarity in the same suite of features is unlikely. In this paper, I discuss the theoretical background of adaptation and functional integration with respect to phylogenetic systematics of primates. Several character examples are reviewed with regard to their functional morphology and phylogenetic signal: postorbital structures, tympanic morphology, fusion of the mandibular symphysis, the tooth comb, strepsirrhine talar morphology, and the prehensile tail. It is clear when considering characters such as these that some characters are synapomorphic of major clades and at the same time functionally important. This appears particularly to be the case when characters are integrated into a complex and maintained as stable configurations. Rather than being simply a problem in character analysis, processes of integration may help to explain the utility of phylogenetically informative characters. On the other hand, the character examples also highlight the difficulty in forming a priori predictions about a character's phylogenetic signal. Explanations of patterns of character evolution are often clade-specific, which does not allow for a simple framework of character selection and/or weighting.  相似文献   
3.
It has been proposed that morphological characters functionally related to mastication may be unreliable indicators of early hominid phylogeny. One hypothesis states that masticatory characters are highly prone to homoplasy. A second hypothesis states that such characters are likely to be morphologically integrated and thus violate the assumption of character independence implicit in all phylogenetic analyses. Evaluation of these hypotheses requires that masticatory features be accurately identified, but, to date, there have been relatively few attempts to test precisely which early hominid features are functionally related to chewing. This paper uses finite-element analysis to evaluate the functional relationships of a character--palatal thickness--that is one of several Paranthropus synapomorphies putatively related to mastication. A finite-element model of 145,680 elements was created from sixty-one 2-mm-thick CT scans of a Macaca fascicularis skull. The model was assigned the elastic properties of facial bone and loaded with muscle forces corresponding to the moment of centric occlusion during mastication. The model was constrained so as to produce a reaction force (corresponding to the bite force) at M(1). With a few exceptions, the strain patterns in the finite-element model compare well with those gathered from published and unpublished bone-strain experiments. The model was then modified to have a thick palate. The model was reloaded using an identical loading regime, and the strain patterns of the original and thick-palate models were compared. Although a thickened palate acts to reduce palatal strain, strains are elevated in other facial regions. This suggests that a thick palate would not have evolved in isolation as an adaptation to withstand masticatory stress. Rather, a thick palate may have evolved in concert with a suite of other facial features that share a stress-resistance function. This appears to be consistent with hypotheses positing that at least some facial features related to chewing evolved in an integrated fashion. More functional studies of other facial features are needed, as are formal studies of morphological integration.  相似文献   
4.
A traditional, widely cited hypothesis for over a century posits the origin of the crinoids from blastozoans. The blastozoan hypothesis is contradicted by the discovery of a new crinoid order, the Protocrinoida. Protocrinoids exhibit many traits that are consistent with a basal crinoid phylogenetic position, but inconsistent with a blastozoan ancestry. Protocrinoids are among the oldest crinoids and are therefore stratigraphically correctly placed. The blastozoan hypothesis in contrast, relies on putative homologies between blastozoans and crinoids taken from taxonomically and stratigraphically disparate representatives of both groups; these disparities indicate homoplasy rather than propinquity of descent. Data supporting these ideas are reviewed here. These findings reinforce insightful observations made by Georges Ubaghs decades ago with less data.  相似文献   
5.
6.
Microsatellite Allelic Homoplasy Due to Variable Flanking Sequences   总被引:1,自引:0,他引:1  
Microsatellite DNA sequences have become the dominant source of nuclear genetic markers for most applications. It is important to investigate the basis of variation between alleles and to know if current assumptions about the mechanisms of microsatellite mutation (that is to say, variations involving simple changes in the number of repeat) are correct. We have characterized, by DNA sequencing, the human alleles of a new highly informative (CA)n repeat localized approximately 20 kb centromeric to the HLA-B gene. Although 12 alleles were identified based on conventional length criteria, sequencing of the alleles demonstrated that differences between alleles were found to be more complex than previously assumed: A high degree of microsatellite variability is due to variation in the region immediately flanking the repeat. These data indicate that the mutational process which generates polymorphism in this region has involved not only simple changes in the number of dinucleotide CA repeats but also perturbations in the nonrepeated 5′ and 3′ flanking sequences. Three families of alleles (not visible from the overall length of the alleles), with presumably separate evolutionary histories, exist and can yield to homoplasy of size. Effectively, we can observe alleles of the same size with different internal structures which are separated by a significant amount of variation. Although allelic homoplasy for noninterrupted microsatellite loci has been suggested between different species, it has not been unequivocally demonstrated within species. A strong association is noted between alleles defined at the sequence level and HLA-B alleles. The observation of several families of alleles at the population level provides information about the evolutionary history and mutation processes of microsatellites and may have implications for the use of these markers in phylogenetic, linkage disequilibrium studies, and gene mapping. Received: 14 May 1996 / Accepted: 9 September 1996  相似文献   
7.
8.
Hard-tissue morphological characters (bones and teeth) are a primary source of information about the evolutionary history of primates. These tissues are commonly found as isolated elements in the fossil record and studied as three separate partitions: the dentition, the cranium, and the postcranium. The relative phylogenetic utility of characters from each partition is often called into question with respect to varying amounts of homoplasy. In this paper, the consistency index (CI) was used to measure levels of homoplasy in each data partition for a sample of fossil and living primates. Sources of bias in the collection and treatment of data and in the internal structure of the data set are addressed. These biases include number of taxa, number of characters, ordering of characters, amounts of polymorphically scored or missing data, and character-state distribution. The results of this study suggest that the levels of homoplasy are very similar, though the postcranial data may be slightly less homoplastic than either the dental or cranial data.  相似文献   
9.
Evolutionary biologists tend to tread cautiously when considering how behavioral data might be incorporated into phylogenetic analyses, largely because of the preconception that behavior somehow constitutes a "special" set of characters that may be inherently more prone to homoplasy or subject to different selection regimes than those that operate on the morphological or genetic traits traditionally used in phylogenetic reconstruction. In this review, we first consider how the evolution of behavior has been treated historically, paying particular attention to why phylogenetic reconstruction has often failed to include behavioral traits. We then discuss, from a theoretical perspective, what reasons there are--if any--for assuming that behavioral traits should be more prone to homoplasy than other types of traits. In doing so, we review several empirical studies that tackle this issue head-on. Finally, we examine how behavioral features have been used to good effect in phylogenetic reconstruction. Our conclusion is that there seems to be little justification on theoretical grounds for assuming that behavior is in any way "special"--either particularly labile or particularly prone to exhibit high levels of homoplasy. Additionally, in reviewing historical perceptions of behavior and their links to conceptions of homology, we conclude that there is no compelling reason why behavior cannot be homologized or therefore why it should not prove phylogenetically informative. In subsequently considering several factors related to selection that influence the likelihood of homoplasy occurring in any trait system, we also found no clear trend predicting homoplasy disproportionately in behavioral systems. In fact, where studied, the degree of homoplasy seen in behavioral traits is comparable to that seen in other trait systems. Ultimately, there appear to be no grounds for dismissing behavior a priori from the class of phylogenetically informative characters.  相似文献   
10.
Homoiologies are phylogenetically misleading morphological similarities that are due to nongenetic factors. It has been claimed that homoiologies are common in the hominin skull, especially in regions affected by masticatory strain, and that their prevalence is one reason why reconstructing hominin phylogenetic relationships is difficult. To evaluate this "homoiology hypothesis," we performed analyses on a group of extant primates for which a robust molecular phylogeny is available--the hominoids. We compiled a data set from measurements that developmental considerations and experimental evidence suggest differ in their likelihood of exhibiting masticatory-strain-induced phenotypic plasticity. We then used the coefficient of variation and t-tests to evaluate the phenotypic plasticity of the measurements. We predicted that, if the hypothesis is correct, the measurements of skeletal features that do not remodel and therefore are unaffected by phenotypic plasticity should be less variable than the measurements of skeletal features that remodel and are subject to low-to-moderate strains, and that the latter should be less variable than the measurements of skeletal features that remodel and are subject to moderate-to-high strains. Subsequently, we performed phylogenetic analyses on character state data derived from the measurements and compared the resulting phylogenetic hypotheses to the consensus molecular phylogeny for the hominoids. We predicted that, if the hypothesis is correct, agreement between the phylogenies should be best for the non-phenotypically-plastic characters, intermediate for the low-to-moderate-strain characters, and worst for the moderate-to-high-strain characters. The results of the coefficient of variation/t-test analyses were consistent with the predictions of the hypothesis to the extent that the moderate-to-high-strain measurements exhibited significantly more variability than the non-phenotypically-plastic and low-to-moderate-strain measurements. In contrast, the results of the phylogenetic analyses were not those predicted. The phylogeny derived from the moderate-to-high-strain characters matched the molecular phylogeny better than those obtained using the non-phenotypically-plastic and low-to-moderate-strain characters. Thus, our study supports the suggestion that mechanical loading results in phenotypic plasticity in the hominin skull, but it does not support the notion that homoiologies have a significant negative impact on hominin phylogenetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号