首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   5篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1979年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
Geographic variation in sexual dimorphism of tooth size was assessed for the red fox Vulpes vulpes (Linnaeus, 1758) across the whole northern range of the species. Twenty-one measurements of tooth size and skull length were taken from 2849 specimens (1577 males and 1272 females) originating from 12 Nearctic and 25 Palearctic localities. The index of sexual dimorphism was calculated as a quotient of the mean measure of certain characters in males by the respective mean in females ( M m/ M f). In the whole range, the males were larger than females and mean dimorphism index of tooth size ranged from 1.01 to 1.06. On average, the tooth measurements in males were 3.6% larger than in females. The highest dimorphism was observed in the canines. Dimorphism of tooth size was higher in the Palearctic than Nearctic. Statistically significant differences between regions were found for lengths of C1, C1 and M1. In the Palearctic, higher values of the dimorphism indices were observed particularly in the southern parts of the Eurasian range of the red fox and in Great Britain. For a few metrical traits, sexual dimorphism indices presented significant relations to some geo-climatic variables. The geographic pattern of size dimorphism in the red fox seems to be shaped by sexual selection, intraspecific and interspecific competition and population density.  相似文献   
2.
A fourth species of the Holarctic Ilybius angustior complex, Ilybius minakawai n. sp., is described from the Island of Sakhalin in the Russian far east. Male genitalia are diagnostic within this species complex, although from body size and shape the new species cannot be separated from I. churchillensis Wallis from north Alaska and the Canadian low arctic. The small and narrow body characteristic of these two species represents an extreme of the cold climate form of the widespread I. angustior (Gyllenhal). Low variation within the studied large ribosomal and cytochrome c oxidase subunit I mitochondrial genes suggest that speciation events within the I. angustior-complex are fairly recent. In combination with known geographical ranges, the low genetic variation within this species complex suggest speciation within Pleistocene refugia including Beringia.  相似文献   
3.
The velvet longhorned beetle, Trichoferus campestris (Coleoptera: Cerambycidae) is a serious wood‐boring pest that is a major threat to the phytosanitary condition of forests and orchards. Its worldwide expansion is a major concern for plant health. We have collected all bibliographical references, phytosanitary reports and authentic photographic evidence from entomological websites to determine the worldwide distribution of T. campestris. The theoretical directions of the spreading and actually occupied area of this arthropod pest were determined over the whole Holarctic range. Furthermore, the potential distribution area was calculated using cumulated temperature in the growing season averaged over 15 years both in the Palearctic and Nearctic regions. Holarctic expansion of the species, including the main parts of North America and Eurasia, is clearly indicated. Its populations occur in 29 countries to date, supported by documentation from 64 publications and 30 online forums. Its spread is continuously westward in the Palearctic; in the Nearctic, the spread was first southward from the Great Lakes region then eastward from Utah. The species has excellently adapted to circumstances of freight by ship and plane, as wood is often used, ensuring optimal conditions for the pest. In addition, the active spreading achieved by flying is an important factor contributing to its expansion. The primary criterion for controlling the species would be the introduction of a monitoring system in affected and exposed areas.  相似文献   
4.
Aim  To identify the factors that determine the geographical range sizes of ectoparasites with different degrees of host specificity.
Location  The study used data on the distributions of fleas of the genus Amphipsylla and their rodent hosts across the Holarctic.
Methods  All known points of occurrence of 32 flea species and 51 species of their rodent hosts were mapped. The shape and size of the geographical range of each species were estimated using a combination of the minimal convex polygon technique and modelling with the garp algorithm. Factors determining the geographical range sizes of the fleas were identified using stepwise multiple regression analysis.
Results  The geographical range size of fleas that are strongly host-specific across their entire ranges correlated positively with the geographical range size of the fleas' principal hosts, and negatively with the geographical range size of the fleas' potential competitors. The geographical range sizes of both (1) fleas that are locally host-specific but that shift their host preferences geographically, and (2) host-opportunistic fleas were positively correlated only with the area of the geographical ranges of their principal hosts. Strongly host-specific fleas occupied 0.2–80.0% of the geographical range of their principal hosts, whereas this figure was 0.9–83.7% in locally host-specific fleas and 16.6–63.7% in host-opportunistic fleas.
Main conclusions  The main determinant of the geographical range size of a flea species is the size of the geographical range of its hosts. The role of potential competitors in determining the geographical range size is stronger in host-specific than in host-opportunistic fleas. Cases in which the geographical range of a parasite is smaller than the geographical range(s) of its host(s) owing to narrower parasite environmental tolerances are much more frequent in host-opportunistic than in host-specific fleas.  相似文献   
5.
Aim To evaluate the influence of environment and biogeographical region, as a proxy for historical influence, on the ecological structure of Holarctic communities from similar environments. It is assumed that similarities among communities from similar environments in different realms are the result of convergence, whereas their differences are interpreted as being due to different historical processes. Location Holarctic realm, North America and Eurasia above 25° N. Methods Checklists of mammalian species occurring in 96 Holarctic localities were collected from published sources. Species were assigned to one of 20 functional groups defined by diet, body size and three‐dimensional use of space. The matrix composed of the frequencies of functional groups in the 96 localities is used as input data in a correspondence analysis (CA). The localities are classified into nine groups according to Bailey's ecoregions (used as a surrogate of regional climate), and the positions of the communities in the dimensions of the CA are compared in relation to ecoregion and realm. Partial regression was used to test for the relative influence of ecoregion and realm over each dimension and to evaluate the effect of biogeographical realm on the variation in the factor scores of the communities of the same ecoregion. Results In some cases, mammalian communities from areas with similar regional climates exhibit convergence in community structure, irrespective of the biogeographical realm where they are located. However, all of them are clearly subdivided into Nearctic and Palearctic subsets. Differences in the composition of the regional pools only partially explain differences in local communities between realms. Main conclusions Holarctic mammalian communities from regions with widely different climates differ in ecological structure irrespective of their biogeographical location. On the other hand, the structures of Nearctic and Palearctic communities from regions of similar climate radically differ in some features. Thus, although present climatic conditions influence community structure, contingent historic processes associated with each region also play a major role in determining community structure.  相似文献   
6.
7.
Aim Spatial variation in the diversity of fleas parasitic on small mammals was examined to answer three questions. (1) Is the diversity of flea assemblages repeatable among populations of the same host species? (2) Does similarity in the composition of flea assemblages among populations of the same host species decay with geographical distance, with decreasing similarity in the composition of local host faunas, or with both? (3) Does the diversity of flea assemblages correlate with climatic variables? Location The study used previously published data on 69 species of small mammals and their fleas from 24 different regions of the Holarctic. Methods The diversity of flea assemblages was measured as both species richness and the average taxonomic distinctness of their component species. Similarity between flea assemblages was measured using both the Jaccard and Morisita–Horn indices, whereas similarity in the composition of host faunas between regions (host ‘faunal’ distance) was quantified using the Jaccard index. Where appropriate, a correction was made for the potentially confounding influence of phylogeny using the independent contrasts method. Results Flea species richness varied less within than among host species, and is thus a repeatable host species character; the same was not true of the taxonomic distinctness of flea assemblages. In almost all host species found in at least five regions, similarity in flea assemblages decreased with increases in either or both geographical and faunal distance. In most host species, the diversity of flea assemblages correlated with one or more climatic variable, in particular mean winter temperature. Main conclusions Spatial variation in flea diversity among populations of the same mammal species is constrained by the fact that it appears to be a species character, but is also driven by local climatic conditions. The results highlight how ecological processes interact with co‐evolutionary history to determine local parasite biodiversity.  相似文献   
8.
Aim Studies comparing feeding habits across a genus in different geographical regions or habitats can identify factors associated with adaptive feeding behaviour, linking key ecological traits between consumers and their environment. We investigated biogeographical patterns in dietary composition and trophic diversity across the genus Martes in relation to geographical range and environmental variables. We hypothesized that widely distributed opportunistic Martes species should demonstrate adaptive variations in dietary composition and trophic diversity relative to regional geographical location (e.g. latitude, elevation), environmental variation (e.g. temperature, rainfall, snow cover and primary productivity) and concomitant variation in food supply. Location Europe, Asia and North America. Methods We examined the dietary habits of martens (Martes spp.) using original data expressed as relative frequency of occurrence, and using principal components analysis to extract the main gradients in diet composition. These were then used as response variables in regression analyses, predicted from latitude or elevation. Multiple regression analyses were performed to assess the influence of food types and environmental variables on the trophic diversity index. Results A clear latitudinal gradient in dietary composition was observed. Small mammals were the primary food type, but were less abundant in the diet of martens at lower latitude and elevation. Vegetable matter and insects were consumed more frequently in southerly and/or lower‐elevation localities. Trophic diversity was lower at higher elevation, and increased with a decline in consumption of the dominant food types, i.e. rodents, fruits and insects. Trophic diversity also increased with increasing mean temperature. Main conclusions Biogeographical variations in feeding habits across the genus Martes proved to be associated with latitude, local climate (especially temperature regime) and the availability of alternative potential foods. On an extensive geographical scale, martens respond to varying food availability by adjusting their foraging strategy and thus should be considered facultative generalists. At the species level, however, different climatic variables emerged as differentially important, indicative of adaptations to local conditions. Martes species are opportunistic and flexible feeders, and thus their conservation requires informed management, mindful of how changes in environmental conditions might influence their varied food supply.  相似文献   
9.
Spiders of the genus Micaria are ground-living mimics of ants. Species delineation in these spiders is challenging, mainly because of exceptional high levels of intraspecific variation masking species boundaries. As implied by preliminary DNA barcode data from Central Europe, the Holarctic and very widely distributed glossy ant-spider M. pulicaria shows cryptic diversity. Here, we disentangle the hidden diversity by means of an integrative taxonomy approach, using mitochondrial DNA, morphometrics, traditional genitalic characters and ecology. Our data suggest the clear delineation of two distinct species, which supports the conception of 19th century taxonomists. These early naturalists distinguished M. pulicaria and a second closely related species based on morphology and natural history, which were synonymized in subsequent taxonomic studies. Therefore, we re-circumscribe M. pulicaria and revalidate the long forgotten M. micans. These two Micaria species co-occur sympatrically in vast areas of the western Palearctic, while the Nearctic region is populated by M. pulicaria alone. Male genitalic traits are more dissimilar in the area of sympatry than in allopatry, suggesting a decisive role of reproductive character displacement in species diversification. Our study emphasizes the value of the early taxonomic literature in integrative taxonomic studies, as it may contain crucial information on natural history that are not regularly recorded by modern taxonomists.  相似文献   
10.
The brown bear has proved a useful model for studying Late Quaternary mammalian phylogeography. However, information is lacking from northern continental Eurasia, which constitutes a large part of the species' current distribution. We analysed mitochondrial DNA sequences (totalling 1943 bp) from 205 bears from northeast Europe and Russia in order to characterize the maternal phylogeography of bears in this region. We also estimated the formation times of the sampled brown bear lineages and those of its extinct relative, the cave bear.
Four closely related haplogroups belonging to a single mitochondrial subclade were identified in northern continental Eurasia. Several haplotypes were found throughout the whole study area, while one haplogroup was restricted to Kamchatka. The haplotype network, estimated divergence times and various statistical tests indicated that bears in northern continental Eurasia recently underwent a sudden expansion, preceded by a severe bottleneck. This brown bear population was therefore most likely founded by a small number of bears that were restricted to a single refuge area during the last glacial maximum. This pattern has been described previously for other mammal species and as such may represent one general model for the phylogeography of Eurasian mammals. Bayesian divergence time estimates are presented for different brown and cave bear clades. Moreover, our results demonstrate the extent of substitution rate variation occurring throughout the phylogenetic tree, highlighting the need for appropriate calibration when estimating divergence times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号