首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  1993年   1篇
  1992年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Histidine supported good growth of Alcaligenes eutrophus strain H 16 as a nitrogen source, but only poor growth as a carbon and energy source. The facultative chemolithoautotrophic bacterium was also able to utilize urocanic acid, the first intermediate of histidine catabolism. The products of histidine degradation were ammonium, formate and glutamate. Three enzymes of the pathway, histidase, urocanase and formiminoglutamate hydrolase, were present in histidine-grown cells. Two types of spontaneous mutants, derived from the wild type, were characterized by an increased growth rate on histidine. One of these types was found to produce histidase constitutively and at a higher activity compared with the parental strain. The second type of mutant had apparently gained an improved histidine uptake system, which is supposed to be growth rate-limiting in the wild type. From the physiological studies the conclusion was drawn that the control of histidine-degrading enzymes is based on induction by urocanate and catabolite repression by carbon sources supporting fast growth, such as succinate or pyruvate. Ammonium was found not to affect catabolite repression, however, we obtained evidence that histidine uptake is subject to a nitrogen control.Abbreviation CTAB hexadecyltrimethylammonium bromide  相似文献   
2.
In Pseudomonas aeruginosa the formation of urease, histidase and some other enzymes involved in nitrogen assimilation is repressed by ammonia in the growth medium. The key metabolite in this process appears to be glutamine or a product derived from it, since ammonia and glutamate did not repress urease and histidase synthesis in a mutant lacking glutamine synthetase activity when growth was limited for glutamine. The synthesis of these enzymes was repressed in cells growing in the presence of excess glutamine. High levels of glutamine were also required for the derepression of NADP-dependent glutamate dehydrogenase formation in the glutamine synthetase-negative mutant.  相似文献   
3.
Streptomyces tendae Tü901 produces nikkomycins belonging to the nucleoside peptide antibiotics. Mutants defective in histidine catabolism were isolated and characterized with regard to their histidine ammonium-lyase activity and antibiotic synthesis. In the histidine ammonialyase-negative mutant hut-11 which was unimpaired in nikkomycin production histidine aminotransferase activity was detected as an additional histidine metabolizing enzyme. A protein exhibiting histidine aminotransferase activity could be demonstrated on non-denaturing gels of hut-11 crude extracts. Using optimized assay conditions, histidine aminotransferase activity was investigated in the strain hut-11 during growth in nikkomycin production medium. Maximal activity was reached at the end of exponential growth prior to nikkomycin production. In the presence of bromopyruvate, an effective inhibitor of histidine aminotransferase activity in vitro, production of nikkomycin Z and X was markedly reduced in hut-11.  相似文献   
4.
Abstract Bacillus sphaericus grew with increasing doubling times on acetate, gluconate, histidine, arginine and succinate as carbon and energy sources. When grown with both acetate and histidine, B. sphaericus used the former preferentially and diauxic growth was observed, although there was no detectable lag between the two growth phases. Histidase, the first enzyme of the histidine utilization pathway, was induced by histidine but not in the presence of acetate. In the absence of an alternative nitrogen source, B. sphaericus was unable to grow with acetate as carbon source and histidine as nitrogen source (presumably because of repression of histidase biosynthesis), although it could grow on histidine alone. Acetate also inhibited sporulation in B. sphaericus .  相似文献   
5.
The effect of molecular hydrogen on heterotrophic metabolism of the facultative chemolithoautotrophic bacterium Alcaligenes eutrophus strain H 16 was representatively investigated on histidine utilization. The presence of hydrogen in a histidine or urocanate-containing medium had two effects (i) growth of the cells was inhibited, and (ii) formation of histidase was repressed. Both effects were relieved by supplying the cells with exogenous carbon dioxide. Studies on mutants defective in chemolithoautotrophic metabolism revealed that growth inhibition by hydrogen was exclusively mediated by the catalytic function of the soluble hydrogenase. Mutants containing only particulate hydrogenase activity did not exhibit growth inhibition. Repression of histidase formation, however, was mediated by the catalytic activity of the soluble as well as the particulate hydrogenase. Unexpectedly, mutants defective in autotrophic carbon dioxide fixation but unaffected in hydrogen oxidation showed an inhibition of growth by hydrogen but no repression of histidase synthesis. Mutants which formed histidase constitutively were still sensitive to repression in the presence of hydrogen. The results indicate that repression of enzyme synthesis by hydrogen is dependent on the function of both, the hydrogen-oxidizing and the carbon dioxide-fixing system. It is concluded that the hydrogen effect is a transient regulatory mechanism and only relevant for unbalanced conditions of growth.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号