首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   924篇
  免费   29篇
  国内免费   4篇
  957篇
  2023年   7篇
  2022年   5篇
  2021年   8篇
  2020年   12篇
  2019年   7篇
  2018年   11篇
  2017年   8篇
  2016年   5篇
  2015年   14篇
  2014年   28篇
  2013年   42篇
  2012年   27篇
  2011年   32篇
  2010年   29篇
  2009年   69篇
  2008年   59篇
  2007年   60篇
  2006年   59篇
  2005年   29篇
  2004年   24篇
  2003年   18篇
  2002年   19篇
  2001年   12篇
  2000年   29篇
  1999年   23篇
  1998年   25篇
  1997年   26篇
  1996年   16篇
  1995年   28篇
  1994年   34篇
  1993年   21篇
  1992年   27篇
  1991年   23篇
  1990年   16篇
  1989年   18篇
  1988年   13篇
  1987年   8篇
  1986年   10篇
  1985年   12篇
  1984年   8篇
  1983年   15篇
  1982年   8篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有957条查询结果,搜索用时 15 毫秒
1.
Na+-dependent uptake of L-[3H]proline was measured in a crude synaptosomal preparation from the entire rat hippocampal formation or from isolated hippocampal regions. Among hippocampal regions, Na+-dependent proline uptake was significantly greater in areas CA1 and CA2-CA3-CA4 than in the fascia dentata, whereas there was no marked regional difference in the distribution of Na+-dependent gamma-[14C]aminobutyric acid ([14C]GABA) uptake. A bilateral kainic acid lesion, which destroyed most of the CA3 hippocampal pyramidal cells, reduced Na+-dependent proline uptake by an average of 41% in area CA1 and 52% in area CA2-CA3-CA4, without affecting the Na+-dependent uptake of GABA. In the fascia dentata, neither proline nor GABA uptake was significantly altered. Kinetic studies suggested that hippocampal synaptosomes take up proline by both a high-affinity (KT = 6.7 microM) and a low-affinity (KT = 290 microM) Na+-dependent process, whereas L-[14C]glutamate is taken up predominantly by a high-affinity (KT = 6.1 microM) process. A bilateral kainic acid lesion reduced the Vmax of high-affinity proline uptake by an average of 72%, the Vmax of low-affinity proline uptake by 44%, and the Vmax of high affinity glutamate uptake by 43%, without significantly changing the affinity of the transport carriers for substrate. Ipsilateral-commissural projections of CA3 hippocampal pyramidal cells appear to possess nearly as great a capacity for taking up proline as for taking up glutamate, a probable transmitter of these pathways. Therefore proline may play an important role in transmission at synapses made by the CA3-derived Schaffer collateral, commissural, and ipsilateral associational fibers.  相似文献   
2.
Previous work has shown that incubation of hippocampal slices in medium without added calcium markedly attenuates the capacity of vasoactive intestinal peptide (VIP) to elevate cyclic AMP levels. The present studies examined the mechanism that confers calcium dependence on VIP stimulation of cyclic AMP accumulation in hippocampal slices. Calcium dependence was apparent immediately on slice preparation and was reversible only if calcium ions were added back very early during slice incubation (within 5 min). The cyclic AMP response to VIP was not abolished by preincubating slices in 100 microM adenosine, suggesting that calcium-dependent, VIP-induced release of adenosine does not mediate VIP elevation of cyclic AMP. VIP-stimulated cyclic AMP accumulation was not decreased by agents that block calcium influx (verapamil, nifedipine, magnesium ions), or by calmodulin antagonists (trifluoperazine, calmidozolium). In fact both verapamil (100 microM) and magnesium (14 mM) augmented VIP stimulation of cyclic AMP generation. Incubation of slices with the phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine (MIX) did not affect VIP activation of cyclic AMP accumulation if slices were incubated without added calcium, but MIX did enhance VIP elevation of cyclic AMP content in slices incubated with calcium. Thus calcium dependence of the cyclic AMP response to VIP in hippocampal slices is unlikely to result from VIP-dependent calcium influx, from interactions with calmodulin, or from calcium-inhibited phosphodiesterase(s).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
The release of endogenous amino acids from depolarized rat hippocampal mossy fiber synaptosomes was investigated to assess the possible role(s) of glutamate and aspartate in mediating the excitatory mossy fiber synaptic input. The relative proportions of prodynorphin-derived peptides concomitantly released with amino acids were also determined to further characterize the biochemical basis for mossy fiber synaptic transmission. Of the 18 amino acids shown to be present in superfusate fractions by liquid chromatographic analysis, only glutamate was released at a significantly enhanced rate from K+-stimulated (35 mM KCl) mossy fiber nerve endings. The rates of glutamate and aspartate release were increased by 360±27% and 54±12% over baseline respectively. However, the K+-evoked release of glutamate was substantially more Ca2+-dependent (80%) than was the release of aspartate (49%). The veratridine (45 M)-evoked release of both acidic amino acids was entirely blocked by 1 M tetrodotoxin. Depolarization (45 mM KCl) also stimulated the release of the four prodynorphin (Dyn) products examined, in a rank order of Dyn B >> Dyn A(1–17) > Dyn A(1–8) >> Dyn A(1–13), with Dyn B efflux increasing by more than 5-fold over baseline values. These results suggest that the predominant excitatory amino acid in hippocampal mossy fiber synaptic transmission may be glutamate and that this synaptic input may be modulated by at least four different products of prodynorphin processing.The animals involved in this study were procured, maintained and used in accordance with the Animal Welfare Act and the Guide for the Care and Use of Laboratory Animals prepared by the Institute of Laboratory Animal Resources—National Research Council.  相似文献   
4.
Abstract: Extracellular protein fractions were obtained (1) by mild, isotonic irrigation of freshly perfused brain tissue; (2) by collection of proteins released into super-fusing medium by physiologically viable slices of rat hippocampus; and (3) by sampling the CSF of anesthetized rats. Analysis of the S-100 protein content of these fractions gave values of 2.8, 4.2, and 1.8 μg S-100/mg protein, respectively. These values were three- to sixfold higher than the S-100 content of the soluble cytoplasmic protein fractions from the same tissue. This several-fold higher S-100 content of the extracellular protein fractions relative to the intracellular cytoplasmic protein fractions indicates that S-100 is selectively released into the extracellular spaces of the brain. We suggest that the biological function of this CNS protein may involve intercellular transfer.  相似文献   
5.
Abstract: The concentration of γ-aminobutyrate (GABA) and the activity of glutamate decarboxylase and GABA-transaminase were measured in extracts of mouse brain before the onset and during the course of generalized seizures induced by systemic administration of homocysteine thiolactone. The results indicate that whole brain GABA metabolism is unaffected by subconvulsive and convulsive doses of homocysteine at all stages of the generalized seizure. Electroencephalographic monitoring of rat brain electrical activity via hippocampal electrode implantation allowed the course of homocysteine-induced seizures to be followed and afforded a means of quantifying such seizures.  相似文献   
6.
Abstract: The combined techniques of HPLC and radioimmunoassay were used to identify and quantitate enkephalin-related peptides in the guinea pig hippocampus. Both met- and leu-enkephalin were identified, in approximately a 2:1 ratio, as well as a third enkephalin-like molecule that is neither met- nor leu-enkephalin. The third enkephalin elutes earlier than met- or leu-enkephalin from a reversed-phase column, has a molecular weight similar to the other enkephalins, and is as active as these enkephalins are in inhibiting binding of labeled opiates to rat brain membranes. All regions of the hippocampus (dentate gyrus, CA1–2, CA3–4, and subiculum) contain all three immunoreactive peptides. Immunocytochemical techniques, using antisera raised against met-enkephalin, show with one antiserum immunoreactivity in the granule cell-mossy fiber system, and with the other scattered immunoreactive cells mostly in the CA2 region. Enkephalins are not confined to the mossy fiber system, as previously suggested, but may be a component of another hippocampal innervation.  相似文献   
7.
Modulation of acetylcholine (ACh) release from superfused hippocampal slices was examined when the release of ACh was stimulated by exposure of slices to elevated K+ concentration. Evoked release was not sensitive to inhibition by 0.1 microM tetrodotoxin, but it could be inhibited in a dose-dependent manner by a muscarinic agonist (10-100 nM oxotremorine) and a purinergic agonist (10-100 nM 2-chloroadenosine). The alpha-dendrotoxin (100 nM), which selectively blocks voltage-gated inactivating K+ channels in nerve endings, did not affect the release of ACh under resting or depolarized conditions. However, alpha-dendrotoxin reduced the 2-chloroadenosine-induced inhibition of release, but did not alter the oxotremorine-induced inhibition. These results suggest that an alpha-dendrotoxin-sensitive K+ channel may be activated as an obligatory step in the modulation of ACh release by presynaptic purinergic receptor activation, but not in the modulation by presynaptic muscarinic receptors.  相似文献   
8.
Periodic induction of focal electrical seizure [afterdischarge (AD)] is an absolute prerequisite for the development of kindling, an animal model of complex partial epilepsy. Once established, it is a permanent condition. The mechanism(s) that translate ADs, which last tens of seconds, into life-long alterations in the CNS is unclear. Cellular immediate-early genes have been implicated in the conversion of short-term stimuli to long-term alterations in cellular phenotypes by regulating target gene expression. We have investigated the contribution of one such early gene, c-fos, to this process. The relationship between ADs and expression of c-fos gene in the rat hippocampus, a key structure in kindling development, was studied by analysis of mRNA levels. The low constitutive expression of c-fos mRNA in the hippocampus was not altered by kindling. There was an "all-or-none" relationship between induction of c-fos and the duration of AD. The threshold for induction was approximately 30 s of AD. Above-threshold ADs induced c-fos in both naive and kindled animals to the same extent and with identical temporal profiles. Although the expression of c-fos is unchanged with kindling, c-fos may nonetheless contribute to many long-term changes of kindling, both adaptive and epileptogenic.  相似文献   
9.
Recent investigations have demonstrated that taurine and phosphoethanolamine (PEA) are the amino acids most sensitive to microdialysis-perfusion with reduced concentrations of NaCl. The aim of the present work was to assess the importance of Na+ deficiency in evoking this response. Further, the previously described selectivity of replacement of Cl- with acetate with respect to amino acid release was reinvestigated. The hippocampus of urethane-anesthetized rats was dialyzed with Krebs-Ringer bicarbonate buffer, and amino acid concentrations of the perfusate were determined. Choline chloride was then stepwise substituted for NaCl, and, in some cases, mannitol (122 mM) was included in low sodium-containing media. In other experiments, NaCl was replaced with sodium acetate. The dialysate levels of taurine increased selectively in response to Na+ substitution. The elevation of taurine was linearly related to the increase in choline chloride, and maximal levels amounted to 335% of basal levels. The increase in extracellular taurine was not inhibited by perfusion with medium made hyperosmotic with mannitol. Replacement of Cl- with acetate stimulated the release of taurine to 652% of resting levels. In addition, PEA levels increased to 250% of control concentration. Other amino acids were unaffected by Cl- substitution. The results show that taurine transport is considerably more sensitive to Na+ depletion than glutamate transport, which also is known to be Na+ dependent. The taurine increase evoked by low Na+ is not caused by cellular swelling as it was unaffected by hyperosmolar medium. Finally, substitution of acetate for Cl- causes a specific elevation of extracellular taurine and PEA, possibly as a result of cytotoxic edema.  相似文献   
10.
An antiserum raised to Torpedo electromotor synaptosomal membranes (anti-TSM antiserum) induces a cholinergic-specific immune lysis of mammalian brain synaptosomes and recognizes a group of minor gangliosides appeared, therefore, to be specific to the cholinergic neuron and were designated Chol-1. To confirm the cholinergic specificity of the Chol-1 gangliosidic antigens, we have shown that not only does a mammalian ganglioside fraction that is enriched with respect to the Chol-1 gangliosides inhibit the cholinergic-specific immune lysis induced by the anti-TSM antiserum, but also it can be used to affinity-purify a subpopulation of immunoglobulins from the anti-TSM antiserum that also induce a cholinergic-specific lysis. Furthermore, we have demonstrated that fimbrial lesions, which cause a massive degeneration of cholinergic terminals in the ipsilateral hippocampus, lead to a loss of the Chol-1 gangliosides concomitant with that shown by choline acetyltransferase activity and that lesions to the entorhinal cortex, which cause a loss of mainly glutamergic synapses in the ipsilateral dentate gyrus leading to cholinergic sprouting from adjacent hippocampal areas and an increase in cholinergic markers in the dentate gyrus, produce concomitant increases in choline acetyltransferase activity and Chol-1 content. These results provide strong evidence in favour of the cholinergic specificity of the Chol-1 gangliosides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号