首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2842篇
  免费   549篇
  国内免费   1468篇
  2024年   34篇
  2023年   136篇
  2022年   124篇
  2021年   174篇
  2020年   276篇
  2019年   270篇
  2018年   220篇
  2017年   239篇
  2016年   240篇
  2015年   221篇
  2014年   202篇
  2013年   258篇
  2012年   195篇
  2011年   199篇
  2010年   171篇
  2009年   207篇
  2008年   180篇
  2007年   214篇
  2006年   179篇
  2005年   160篇
  2004年   119篇
  2003年   128篇
  2002年   114篇
  2001年   86篇
  2000年   92篇
  1999年   59篇
  1998年   48篇
  1997年   45篇
  1996年   33篇
  1995年   25篇
  1994年   27篇
  1993年   14篇
  1992年   26篇
  1991年   11篇
  1990年   25篇
  1989年   22篇
  1988年   15篇
  1987年   11篇
  1986年   9篇
  1985年   8篇
  1984年   7篇
  1983年   4篇
  1982年   13篇
  1981年   5篇
  1980年   4篇
  1978年   4篇
  1976年   3篇
  1973年   1篇
  1958年   2篇
排序方式: 共有4859条查询结果,搜索用时 15 毫秒
1.
Summary Collagen genes appear to have been assembled by the tandem repetition of homologous primary (9 base pair), secondary (54 base pair), and tertiary (702 base pair) modules. In vertebrate interstitial collagen genes many of the secondary modules are separated by introns, but in invertebrate collagen genes the non-coding sequences lie near the ends of supposed tertiary modules and are therefore about 702 (54×13) base pairs apart. The genes for vertebrate interstitial collagens (types I–III) seem to have been constructed by the tandem repetition of five tertiary modules, three of which were subsequently shortened by internal deletions. This shortening of the gene resulted in the non-integral relationship between the period of the fibrils and the length of the molecules of vertebrate collagens, and was therefore responsible for the mechanical properties of the completed product. Comparisons of the amino acid sequences of various collagens indicate that the main types of collagen evolved about 800–900 million years ago, a date that agrees well with the fossil record of primitive Metazoa.  相似文献   
2.
Land‐cover change can alter the spatiotemporal distribution of water inputs to mountain ecosystems, an important control on land‐surface and land‐atmosphere hydrologic fluxes. In eastern Mexico, we examined the influence of three widespread land‐cover types, montane cloud forest, coffee agroforestry, and cleared areas, on total and net water inputs to soil. Stand structural characteristics, as well as rain, fog, stemflow, and throughfall (water that falls through the canopy) water fluxes were measured across 11 sites during wet and dry seasons from 2005 to 2008. Land‐cover type had a significant effect on annual and seasonal net throughfall (NTF <0=canopy water retention plus canopy evaporation; NTF >0=fog water deposition). Forest canopies retained and/or lost to evaporation (i.e. NTF<0) five‐ to 11‐fold more water than coffee agroforests. Moreover, stemflow was fourfold higher under coffee shade than forest trees. Precipitation seasonality and phenological patterns determined the magnitude of these land‐cover differences, as well as their implications for the hydrologic cycle. Significant negative relationships were found between NTF and tree leaf area index (R2=0.38, P<0.002), NTF and stand basal area (R2=0.664, P<0.002), and stemflow and epiphyte loading (R2=0.414, P<0.001). These findings indicate that leaf and epiphyte surface area reductions associated with forest conversion decrease canopy water retention/evaporation, thereby increasing throughfall and stemflow inputs to soil. Interannual precipitation variability also altered patterns of water redistribution across this landscape. Storms and hurricanes resulted in little difference in forest‐coffee wet season NTF, while El Niño Southern Oscillation was associated with a twofold increase in dry season rain and fog throughfall water deposition. In montane headwater regions, changes in water delivery to canopies and soils may affect infiltration, runoff, and evapotranspiration, with implications for provisioning (e.g. water supply) and regulating (e.g. flood mitigation) ecosystem services.  相似文献   
3.
4.
The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation‐resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation – an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life‐history patterns – suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm‐producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency‐dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re‐invention of anisogamy within the context of a sporophyte‐dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate‐encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re‐establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation.  相似文献   
5.
6.
7.
Abstract. Small-scale species frequency and cumulative species frequency were studied in four plots in limestone grassland of the Veronica spicata-Avenula pratensis association on Stora Alvaret on the Baltic island of Öland, Sweden. Species mobility was expressed as increase in cumulative species frequency in 20 subplots of 100 cm2. Observed cumulative frequencies from 1985–1989 in all four plots, and from 1985–1995 in one plot were compared with values following from two null models, a ‘minimal mobility’ model and a random mobility model. In ca. 50 % of the cases the observed cumulative frequency was not significantly different from the random expectation. However, in many such cases the mean annual frequency was either very high or very low. Three ways of calculating the mobility rate are presented though only one is used: (observed cumulative frequency -lowest annual frequency) / expected cumulative frequency. Values × 100 range from 0 to 100. There were slight differences between the four plots which were interpreted in terms of differences in grazing intensity and soil depth. It is stressed that the idea of the Carousel model has never been meant to suggest that all species would show random mobility, which we now quantify, but that species differ in their mobility rate and that the mean rate is much higher than generally realized.  相似文献   
8.
Eco-environmental vulnerability assessment is crucial for environmental and resource management. However, evaluation of eco-environmental vulnerability over large areas is a difficult and complex process because it is affected by many variables including hydro-meteorology, topography, land resources, and human activities. The Thua Thien – Hue Province and its largest river system, the Perfume River, are vital to the social-economic development of the north central coastal region of Vietnam, but there is no zoning system for environmental protection in this region. An assessment framework is proposed to evaluate the vulnerable eco-environment in association with 16 variables with 6 of them constructed from Landsat 8 satellite image products. The remaining variables were extracted from digital maps. Each variable was evaluated and spatially mapped with the aid of an analytical hierarchy process (AHP) and geographical information system (GIS). An eco-environmental vulnerability map is assorted into six vulnerability levels consisting of potential, slight, light, medium, heavy, and very heavy vulnerabilities, representing 14%, 27%, 17%, 26%, 13%, 3% of the study area, respectively. It is found that heavy and very heavy vulnerable areas appear mainly in the low and medium lands where social-economic activities have been developing rapidly. Tiny percentages of medium and heavy vulnerable levels occur in high land areas probably caused by agricultural practices in highlands, slash and burn cultivation and removal of natural forests with new plantation forests. Based on our results, three ecological zones requiring different development and protection solutions are proposed to restore local eco-environment toward sustainable development. The proposed integrated method of remote sensing (RS), GIS, and AHP to evaluate the eco-environmental vulnerability is useful for environmental protection and proper planning for land use and construction in the future.  相似文献   
9.
10.
The Menominee River, a boundary water between northeastern Wisconsin and the upper peninsula of Michigan, contains a sport fishery for lake sturgeon, Acipenser fulvescens, which is jointly managed by both states. Previous studies indicated that overfishing of this sturgeon population was occurring, and this investigation examined the impact of new angling regulations. The sturgeon population is fragmented into sections by hydroelectric dams. Stocks from the three main sections of the river were compared before and after implementation of the new angling regulations. Records of the legal harvest of lake sturgeon from each river section were obtained through a registration system, which has been in effect since 1983, and estimates of exploitation were derived from these data. Overfishing of lake sturgeon stocks in two of the three sections of the Menominee River is still occurring. Management recommendations are made which would allow for a continued fishery by providing further protection to the stocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号