首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2021年   1篇
  2015年   1篇
  2006年   1篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
A method for fitting regression models to data that exhibit spatial correlation and heteroskedasticity is proposed. It is well known that ignoring a nonconstant variance does not bias least-squares estimates of regression parameters; thus, data analysts are easily lead to the false belief that moderate heteroskedasticity can generally be ignored. Unfortunately, ignoring nonconstant variance when fitting variograms can seriously bias estimated correlation functions. By modeling heteroskedasticity and standardizing by estimated standard deviations, our approach eliminates this bias in the correlations. A combination of parametric and nonparametric regression techniques is used to iteratively estimate the various components of the model. The approach is demonstrated on a large data set of predicted nitrogen runoff from agricultural lands in the Midwest and Northern Plains regions of the U.S.A. For this data set, the model comprises three main components: (1) the mean function, which includes farming practice variables, local soil and climate characteristics, and the nitrogen application treatment, is assumed to be linear in the parameters and is fitted by generalized least squares; (2) the variance function, which contains a local and a spatial component whose shapes are left unspecified, is estimated by local linear regression; and (3) the spatial correlation function is estimated by fitting a parametric variogram model to the standardized residuals, with the standardization adjusting the variogram for the presence of heteroskedasticity. The fitting of these three components is iterated until convergence. The model provides an improved fit to the data compared with a previous model that ignored the heteroskedasticity and the spatial correlation.  相似文献   
2.
This paper examines the role physical activity plays in determining body mass using data from the American Time Use Survey. Our work is the first to address the measurement error that arises when time use during a single day—rather than average daily time use over an extended period—is used as an explanatory variable. We show that failing to account for day-to-day variation in activities results in the effects of time use on a typical day being understated. Furthermore, we account for the possibility that physical activity and body mass are jointly determined by implementing Lewbel’s instrumental variables estimator that exploits first-stage heteroskedasticity rather than traditional exclusion restrictions. While averaging 30 min of transportation-related biking or walking per day lowers the BMI of men by 1.5, we find no effect of physically active leisure on the BMI of men in our sample. In contrast, 30 min of per day of either type of physical activity lowers the BMI of women by 1.  相似文献   
3.
4.
Population abundances are rarely, if ever, known. Instead, they are estimated with some amount of uncertainty. The resulting measurement error has its consequences on subsequent analyses that model population dynamics and estimate probabilities about abundances at future points in time. This article addresses some outstanding questions on the consequences of measurement error in one such dynamic model, the random walk with drift model, and proposes some new ways to correct for measurement error. We present a broad and realistic class of measurement error models that allows both heteroskedasticity and possible correlation in the measurement errors, and we provide analytical results about the biases of estimators that ignore the measurement error. Our new estimators include both method of moments estimators and "pseudo"-estimators that proceed from both observed estimates of population abundance and estimates of parameters in the measurement error model. We derive the asymptotic properties of our methods and existing methods, and we compare their finite-sample performance with a simulation experiment. We also examine the practical implications of the methods by using them to analyze two existing population dynamics data sets.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号