首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1463篇
  免费   34篇
  国内免费   23篇
  2023年   3篇
  2022年   6篇
  2021年   16篇
  2020年   9篇
  2019年   25篇
  2018年   33篇
  2017年   8篇
  2016年   9篇
  2015年   41篇
  2014年   76篇
  2013年   98篇
  2012年   66篇
  2011年   92篇
  2010年   89篇
  2009年   69篇
  2008年   87篇
  2007年   90篇
  2006年   64篇
  2005年   75篇
  2004年   70篇
  2003年   52篇
  2002年   56篇
  2001年   21篇
  2000年   21篇
  1999年   26篇
  1998年   29篇
  1997年   39篇
  1996年   26篇
  1995年   24篇
  1994年   20篇
  1993年   20篇
  1992年   14篇
  1991年   11篇
  1990年   15篇
  1989年   14篇
  1988年   14篇
  1987年   8篇
  1986年   13篇
  1985年   10篇
  1984年   19篇
  1983年   6篇
  1982年   10篇
  1981年   6篇
  1980年   5篇
  1979年   8篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
排序方式: 共有1520条查询结果,搜索用时 15 毫秒
1.
Ribulosebisphosphate carboxylase/oxygenase (EC 4.1.1.39) (rubisco) must be fully activated in order to catalyze the maximum rates of photosynthesis observed in plants. Activation of the isolated enzyme occurs spontaneously, but conditions required to observe full activation are inconsistent with those known to occur in illuminated chloroplasts. Genetic studies with a nutant of Arabidopsis thaliana incapable of activating rubisco linked two chloroplast polypeptides to the activation process in vivo. Using a reconstituted light activation system, it was possible to demonstrate the participation of a chloroplast protein in rubisco activation. These results indicate that a specific chloroplast enzyme, rubisco activase, catalyzes the activation of rubisco in vivo.  相似文献   
2.
Iron is an essential element for diverse biological functions. In mammals, the majority of iron is enclosed within a single prosthetic group: heme. In metazoans, heme is synthesized via a highly conserved and coordinated pathway within the mitochondria. However, iron is acquired from the environment and subsequently assimilated into various cellular pathways, including heme synthesis. Both iron and heme are toxic but essential cofactors. How is iron transported from the extracellular milieu to the mitochondria? How are heme and heme intermediates coordinated with iron transport? Although recent studies have answered some questions, several pieces of this intriguing puzzle remain unsolved.  相似文献   
3.
4.
Porphobilinogen is the substrate of two enzymes: porphobilinogen deaminase and porphobilinogen-oxygenase. The first one transforms it into the metabolic precursors of heme and the second diverts it from this metabolic pathway by oxidizing porphobilinogen to 5-oxopyrrolinones. Rat blood is devoid of porphobilinogen-oxygenase under normal conditions while it carries porphobilinogen-deaminase activity. When the rats were submitted to hypoxia (pO2 = 0.42 atm) for 18 days, the activity of porphobilinogen-oxygenase appeared at the tenth day of hypoxia and reached the maximum at the 14–16th day. It decreased to a half after 2 days (half-life of the enzyme) and disappeared after 4 days of return to normal oxygen pressure. Porphobilinogen-deaminase activity increased after the first day of hypoxia, reached a maximum at the 14–16th day and did not decrease to normal values until the 15th day after return to normal oxygen pressure. The activities of both prophobilinogen-oxygenase and porphobilinogen-deaminase were induced by administration of erythropoietin. When rats were made anaemic with phenylhydrazine, porphobilinogen-oxygenase activity also appeared in the blood cells. Although the reticulocyte concentration was higher when compared to that obtained under hypoxia, the activities of the oxygenase obtained under both conditions were comparable. Porphobilinogen-deaminase activity was always closely related to the reticulocyte content. The appearance of porphobilinogen-oxygenase under the described erythropoietic conditions was due to a de novo induction of the enzyme, as shown by its inhibition with actinomycin D and cycloheximide. Porphobilinogen-oxygenase as well as porphobilinogen-deaminase were present in the rat bone marrow under normal conditions. Their activities increased in phenylhydrazine treated rats. The properties and kinetics of porphobilinogen-oxygenase from the rat blood and bone marrow were determined and found to differ in several aspects.  相似文献   
5.
The photosynthetic membranes of Anacystis nidulans R2 were examined electrophoretically following solubilization with lithium dodecyl sulfate. Electrophoresis yielded six prominent chlorophyll-containing bands. In addition, five polypeptides were observed which possessed heme-dependent peroxidase activity, monitored by incubating gels with 3,3′,5,5′-tetramethylbenzidine plus hydrogen peroxide. One such polypeptide, at 105 kdaltons, was removed by repeated washing of the membranes. Four remaining peroxidase-active polypeptides were observed at 7.2, 13.5, 18.5 and 33 kdaltons. Further examination of these four polypeptides yielded the following results. (1) The mobility of the 33 kdalton polypeptide was altered from 29 to 33 kdaltons upon heating (70°C) during membrane solubilization. (2) All four polypeptides showed stable heme-protein associations in the presence of 8 M urea; however, in the presence of urea, alterations in protein mobility were observed for each poly-peptide and only two (at 13.5 and 33 kdaltons) showed peroxidase activity following heating (70°C) during membrane solubilization. (3) The presence of thiols during membrane solubilization at 0°C was required to observe peroxidase activity at 7.2 kdaltons. These results, when compared to known properties of isolated cytochromes, suggest that the four polypeptides characterized here correspond to the subunits of photosynthetic cytochromes. Electrophoretic assessment of maize mutants lacking cytochrome f and b6 activity supports this suggestion.  相似文献   
6.
The qualitative distribution and quantitative estimates of nitrogenase (EC 1.7.99.2), glutamine synthetase (EC 6.3.1.2), phycoerythrin and ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) were studied in the cyanobacterium Nostoc residing in internal cephalodia of the tripartite lichen Nephroma arcticum L. Polyclonal antisera, raised in rabbit against the proteins, and goat anti-rabbit IgG conjugated to 10 nm gold were used as probes to detect the antigens by transmission electron microscopy. Western blot analyses demonstrated the monospecificity of the antisera. Nitrogenase was localized in heterocysts, with vegetative cells showing a label intensity comparable to the background. Distribution of the antigen within the heterocysts was uniform. Glutamine synthetase labelling was very low, but appeared to be distributed in both cell types. An intense phycoerythrin labelling was associated with the thylakoid region of the vegetative cells, whereas a much lower labelling was observed in the heterocyst. No significant differences were found between cyanobionts in younger and older cephalodia except for the nitrogenase labelling, which was higher in heterocysts of the cyanobiont in younger cephalodia. Most of the ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) label was present in vegetative cells. The Rubisco label was pronounced in the carboxysomes, whereas the label in the cytoplasm, on a unit area basis, was much lower. Heterocysts showed a label intensity similar to that of the vegetative cell cytoplasm. In Nostoc of the bipartite lichen Peltigera canina L., the Rubisco protein showed a comparable distribution pattern, but the average number of carboxysomes per vegetative cell was about 4 times higher.  相似文献   
7.
We report the successful transformation, via Agrobacterium tumefaciens infection, and regeneration of two species of the genus Flaveria: F. brownii and F. palmeri. We document the expression of a C3 plant gene, an abundantly expressed ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit gene isolated from petunia, in these C4 plants. The organ-specific expression of this petunia gene in Flaveria brownii is qualitatively identical to its endogenous pattern of expression.  相似文献   
8.
We isolated the small subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO SSu) from a fern,Asplenium cataractarum and determined its 34 N-terminal amino acid sequence. We obtained a cDNA clone that contains the entire coding region of the SSu from the same fern species, using synthetic oligonucleotide probes derived from the above amino acid sequence. It contains a 525 bp open reading frame capable of coding for a polypeptide with 174 amino acids, 31 bp 5′-and 206 bp 3′-noncoding regions. It was also elucidated that the precursor to the SSu contains a transit peptide of 53 amino acid residues and a mature protein of 121 residues. We compared the deduced amino acid sequence of the fern SSu with those of 11 other vascular plant species (including gymnosperms, monocots and dicots). As low as 55% homology was observed between those of a fern and seed plants. Constancy of the amino acid substitution rate in RuBisCO SSu was supported by our relative rate test. Amino acid substitution rate per year per site for RuBisCO SSu was calculated to be 0.81×10−9 assuming that the separation between pteridophytes and seed plants arose 380 million years ago.  相似文献   
9.
Leaf senescence and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBP carboxylase, EC 4.1.1.39) degradation in orange [ Citrus sinensis (L.) Osbeck cv. Washington Navel] explants have been investigated. Explants consisted of a segment of stem (ca 15 cm) and 5 mature leaves. In vitro RuBP carboxylase degradation was determined by culturing the explants in water for different periods of time (3 days usually) and quantifying the two RuBP carboxylase subunits in the extracts following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In vitro RuBP carboxylase degradation was estimated by autodigestion of leaf extracts and SDS-PAGE. The extent of in vivo RuBP carboxylase degradation in explants cultured under 16 h light/8 h dark photoperiod varied throughout the year and showed a cyclic behaviour correlated with the growth cycle of Citrus. The highest proteolytic activity both in vivo and in vitro was found in explants made from April to August coinciding with the maximum vegetative growth period of the tree.
Leaf senescence and abscission could be retarded significantly at any time of the year by maintaining the explants continuously in the dark. Treatment of the explants in the dark with a continuous flow of ethylene enhanced both leaf abscission and rate of RuBP carboxylase degradation, proportionally to ethylene concentration (0.1-0.6 ppm). Ethylene-induced senescence of Citrus leaf explants in the dark appears to be a convenient model system to study the regulation of the proteolytic degradation of RuBP carboxylase.  相似文献   
10.
The kinetic parameters of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (EC 4.1.1.39) in wheat (Triticum aestivum L.) and rice (Oryza sativa L.) were determined by rapidly assaying the leaf extracts. The respective K m and V max values for carboxylase and oxygenase activities were significantly higher for wheat than for rice. In particular, the differences in the V max values between the two species were greater. When the net activity of CO2 exchange was calculated at the physiological CO2-O2 concentration from these kinetic parameters, it was 22% greater in wheat than in rice. This difference in the in-vitro RuBP-carboxylase/oxygenase activity between the two species reflected a difference in the CO2-assimilation rate per unit of RuBP-carboxylase protein. However, there was no apparent difference in the CO2-assimilation rate for a given leaf-nitrogen content between the two species. When the RuBP-carboxylase/oxygenase activity was estimated at the intercellular CO2 pressure from the enzyme content and kinetic parameters, these estimated enzyme activities in wheat and rice were similar to each other for the same rate of CO2 assimilation. These results indicate that the difference in the kinetic parameters of RuBP carboxylase between the two species was offset by the differences in RuBP-carboxylase content and conductance for a given leaf-nitrogen content.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic - PAR photosynthetically active radiation - RuBP ribulose-1,5-bisphosphate  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号