首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   219篇
  国内免费   1篇
  2018年   12篇
  2017年   89篇
  2016年   46篇
  2015年   51篇
  2014年   44篇
  2013年   69篇
  2012年   80篇
  2011年   15篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有414条查询结果,搜索用时 15 毫秒
1.
The athermal bioeffects caused by nanosecond electromagnetic pulses with body cells was studied by using a broad band transverse EM-wave cell (BTEM CELL). The experimental system and preliminary mechanism analysis were presented.  相似文献   
2.
低强度微波辐射对人精子非热生物效应的研究   总被引:12,自引:0,他引:12  
选用频率2450MHz分别在3、5、7、9mW/cm2的功率密度,使用新型宽带横电磁传输室(BTEMCELL)辐射人精子1小时,我们发现只有5mW/cm2的强度对人射子的活动度、存活率、畸形率又穿卵率有显著的影响,这表明在5mW/cm2附近存在明显的功率密度窗效应。同时还发现,7mW/cm2组的精子的染色体出现畸变。最后对实验结果进行了讨论。  相似文献   
3.
4',5,7-Trihydroxy-3',5'-dimethoxyflavone (Tricin), a naturally occurring flavone, has anti-inflammatory potential and exhibits diverse biological activities including antigrowth activity in several human cancer cell lines and cancer chemopreventive effects in the gastrointestinal tract of mice. The present study aimed to investigate the biological actions of tricin on hepatic stellate cells (HSCs) in vitro, exploring its potential as a treatment of liver fibrosis, since HSC proliferation is closely related to the progression of hepatic fibrogenesis in chronic liver diseases leading to irreversible liver cirrhosis and hepatocellular carcinoma. Tricin inhibited platelet-derived growth factor (PDGF)-BB-induced cell proliferation by blocking cell cycle progression and cell migration in the human HSC line LI90 and culture-activated HSCs. It also reduced the phosphorylation of PDGF receptor β and the downstream signaling molecules ERK1/2 and Akt, which might be due to its tyrosine kinase inhibitor properties rather than inhibition of the direct binding between PDGF-BB and its receptor. Our findings suggest that tricin might be beneficial in HSC-targeting therapeutic or chemopreventive applications for hepatic fibrosis.  相似文献   
4.
In this study, we created porcine‐induced pluripotent stem (iPS) cells with the expression of six reprogramming factors (Oct3/4, Klf4, Sox2, c‐Myc, Lin28, and Nanog). The resulting cells showed growth dependent on LIF (leukemia inhibitory factor) and expression of multiple stem cell markers. Furthermore, the iPS cells caused teratoma formation with three layers of differentiation and had both active X chromosomes (XaXa). Our iPS cells satisfied the both of important characteristics of stem cells: teratoma formation and activation of both X chromosomes. Injection of these iPS cells into morula stage embryos showed that these cells participate in the early stage of porcine embryogenesis. Furthermore, the RNA‐Seq analysis detected that expression levels of endogenous pluripotent related genes, NANOG, SOX2, ZFP42, OCT3/4, ESRRB, and ERAS were much higher in iPS with six factors than that with four reprogramming factors. We can conclude that the expression of six reprogramming factors enables the creation of porcine iPS cells, which is partially close to naive iPS state. J. Cell. Biochem. 118: 537–553, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   
5.
The principal problem arising from prostate cancer (PCa) is its propensity to metastasize to bones, and it's crucial to understand the mechanism of tumor progression to metastasis in order to develop therapies that may reduce the morbidity and mortality of PCa patients. Although we had identified that microRNA(miR)‐145 could repress bone metastasis of PCa via regulating epithelial–mesenchymal transition (EMT) in previous study, it is still unknown how miR‐145 regulated EMT. In the present study, we constructed a luciferase reporter system and identified HEF1 as a direct target of miR‐145. More importantly, HEF1 was shown to promote migration, invasion and EMT of PC‐3 cells, a human PCa cell line originated from a bone metastatic PCa specimen. And HEF1 was also shown to partially mediate miR‐145 suppression of EMT and invasion. Furthermore, inhibition of HEF1 repressed bone invasion of PC‐3 cells in vivo. Expression of HEF1 was negatively correlated with miR‐145 in primary PCa and bone metastatic specimens, but HEF1 was higher in samples which were more likely to commit to bone metastasis or those with higher free prostate‐specific antigen (fPSA) levels and Gleason scores. Taken together, these findings indicate that HEF1 promotes EMT and bone invasion in prostate cancer by directly targeted by miR‐145, and miR‐145 suppresses EMT and invasion, at least in part, through repressing HEF1. J. Cell. Biochem. 114: 1606–1615, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
6.
The F1F0 ATP synthase has recently become the focus of anti‐cancer research. It was once thought that ATP synthases were located strictly on the inner mitochondrial membrane; however, in 1994, it was found that some ATP synthases localized to the cell surface. The cell surface ATP synthases are involved in angiogenesis, lipoprotein metabolism, innate immunity, hypertension, the regulation of food intake, and other processes. Inhibitors of this synthase have been reported to be cytotoxic and to induce intracellular acidification. However, the mechanisms by which these effects are mediated and the molecular pathways that are involved remain unclear. In this study, we aimed to determine whether the inhibition of cell proliferation and the induction of cell apoptosis that are induced by inhibitors of the cell surface ATP synthase are associated with intracellular acidification and to investigate the mechanism that underlines the effects of this inhibition, particularly in an acidic tumor environment. We demonstrated that intracellular acidification contributes to the cell proliferation inhibition that is mediated by cell surface ATP synthase inhibitors, but not to the induction of apoptosis. Intracellular acidification is only one of the mechanisms of ecto‐ATP synthase‐targeted antitumor drugs. We propose that intracellular acidification in combination with the inhibition of cell surface ATP generation induce cell apoptosis after cell surface ATP synthase blocked by its inhibitors. A better understanding of the mechanisms activated by ecto‐ATP synthase‐targeted cancer therapies may facilitate the development of potent anti‐tumor therapies, which target this enzyme and do not exhibit clinical limitations. J. Cell. Biochem. 114: 1695–1703, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
7.
The toxic metal ion cadmium (Cd2+) induces pleiotropic effects on cell death and survival, in part through effects on cell signaling mechanisms and cytoskeletal dynamics. Linking these phenomena appears to be calmodulin‐dependent activation of the Ca2+/calmodulin‐dependent protein kinase II (CaMK‐II). Here we show that interference with the dynamics of the filamentous actin cytoskeleton, either by stabilization or destabilization, results in disruption of focal adhesions at the ends of organized actin structures, and in particular the loss of vinculin and focal adhesion kinase (FAK) from the contacts is a result. Low‐level exposure of renal mesangial cells to CdCl2 disrupts the actin cytoskeleton and recapitulates the effects of manipulation of cytoskeletal dynamics with biological agents. Specifically, Cd2+ treatment causes loss of vinculin and FAK from focal contacts, concomitant with cytoskeletal disruption, and preservation of cytoskeletal integrity with either a calmodulin antagonist or a CaMK‐II inhibitor abrogates these effects of Cd2+. Notably, inhibition of CaMK‐II decreases the migration of FAK‐phosphoTyr925 to a membrane‐associated compartment where it is otherwise sequestered from focal adhesions in a Cd2+‐dependent manner. These results add further insight into the mechanism of the CaMK‐II‐dependent effects of Cd2+ on cellular function. J. Cell. Biochem. 114: 1832–1842, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
8.
9.
10.
Although sphingolipids emerged as important signals for plant response to low temperature, investigations have been limited so far to the function of long‐chain base intermediates. The formation and function of ceramide phosphates (Cer‐Ps) in chilled Arabidopsis were explored. Cer‐Ps were analysed by thin layer chromatography (TLC) following in vivo metabolic radiolabelling. Ceramide kinase activity, gene expression and growth phenotype were determined in unstressed and cold‐stressed wild type (WT) and Arabidopsis ceramide kinase mutant acd5. A rapid and transient formation of Cer‐P occurs in cold‐stressed WT Arabidopsis plantlets and cultured cells, which is strongly impaired in acd5 mutant. Although concomitant, Cer‐P formation is independent of long‐chain base phosphate (LCB‐P) formation. No variation of ceramide kinase activity was measured in vitro in WT plantlets upon cold stress but the activity in acd5 mutant was further reduced by cold stress. At the seedling stage, acd5 response to cold was similar to that of WT. Nevertheless, acd5 seed germination was hypersensitive to cold and abscisic acid (ABA), and ABA‐dependent gene expression was modified in acd5 seeds when germinated at low temperature. Our data involve for the first time Cer‐P and ACD5 in low temperature response and further underline the complexity of sphingolipid signalling operating during cold stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号