首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   1篇
  国内免费   3篇
  136篇
  2023年   1篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   26篇
  2012年   4篇
  2011年   2篇
  2009年   6篇
  2008年   6篇
  2007年   5篇
  2006年   2篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   16篇
  1998年   1篇
  1994年   1篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
排序方式: 共有136条查询结果,搜索用时 11 毫秒
1.
2.
 中国仓鼠卵巢细胞(CHO-K1)经N-甲基-N'-硝基-N-亚硝基胍(MNNG)诱变和6-巯基鸟嘌呤(6-TG)选择,得到稳定的次黄嘌呤磷酸核糖转移酶(HPRT)缺陷细胞株,酶活性仅为野生型的6.5%。用磷酸钙共沉淀法和电脉冲法向HPRT-细胞转移人宫颈癌细胞(HeLaS_3)基因组DNA,纠正了CHO细胞的HPRT缺陷。酶活性提高了6.9倍,达到野生型的45%。用Alu序列探针进行分子杂交,证实经过基因转移并连续传代15次以上的受体细胞中含人DNA序列。表明人的有关基因已稳定地整合到CHO细胞的染色体中。  相似文献   
3.
4.
根据已知大鼠次黄嘌呤鸟嘌呤磷酸核糖转移酶 (HypoxanthineGuaninePhosphoribosylTransferase ,HPRT)基因的外显子序列 ,从大鼠HPRT基因组DNA序列的细菌人工染色体 (BacterialArtificialChromosome ,BAC)中用酶切和PCR方法分别分离得到用于构建基因敲除载体的 3 0kb的 5′长臂 (LongArm ,LA)和 1 7kb的 3′短臂 (ShortArm ,SA) ,并分别克隆到pSL1180和pCR2 1中。进一步构建大鼠HPRT基因打靶载体———pKO HPRT ,经酶切鉴定后的大鼠HPRT基因敲除载体用NotⅠ酶切使其线性化 ,经溴乙锭、正丁醇、酚、酚 /氯仿提纯后 ,将终浓度调至 1μg μl。在FuGene 6转染试剂的作用下转染培养 2 4h的第二代大鼠胎脑神经干细胞 (RatFetalNeuralStemCells,rFNSCs)。转染后的细胞用 80 μg mlG4 18和 0 2 μmol L的Ganc全培养液筛选 ,2w后将存活细胞进行悬浮培养 ,使细胞形成球形物 ,挑选单个的球形物进行单克隆增殖 ,其中一部分细胞 (约 2~ 3× 10 3)用裂解液处理 ,取上清用于PCR检测 ,大部分细胞 (5× 10 7)用于DNA和RNA的提取 ,进行Southernbolt和RT PCR检测 ,剩余细胞冷冻保存。最后 1次实验共分离培养了 32个rFNSCs单克隆 ,其中 3个单克隆 (9 3% )经PCR、Southernbolt和RT PCR证实HPRT基因已被敲除  相似文献   
5.
Cadherins are homophilic cell-to-cell adhesion molecules that help cells respond to environmental changes. Newly formed cadherin junctions are associated with increased cell phosphorylation, but the pathways driving this signaling response are largely unknown. Since cadherins have no intrinsic signaling activity, this phosphorylation must occur through interactions with other signaling molecules. We previously reported that cadherin-11 engagement activates joint synovial fibroblasts, promoting inflammatory and degradative pathways important in rheumatoid arthritis (RA) pathogenesis. Our objective in this study was to discover interacting partners that mediate cadherin-11 signaling. Protein array screening showed that cadherin-11 extracellular binding domains linked to an Fc domain (cad11Fc) induced platelet-derived growth factor (PDGFR)-α phosphorylation in synovial fibroblasts and glioblastoma cells. PDGFRs are growth factor receptor tyrosine kinases that promote cell proliferation, survival, and migration in mesodermally derived cells. Increased PDGFR activity is implicated in RA pathology and associates with poor prognosis in several cancers, including sarcoma and glioblastoma. PDGFRα activation by cadherin-11 signaling promoted fibroblast proliferation, a signaling pathway independent from cadherin-11-stimulated IL-6 or matrix metalloproteinase (MMP)-3 release. PDGFRα phosphorylation mediated most of the cad11Fc-induced phosphatidyl-3-kinase (PI3K)/Akt activation, but only part of the mitogen-activated protein kinase (MAPK) response. PDGFRα-dependent signaling did not require cell cadherin-11 expression. Rather, cad11Fc immunoprecipitated PDGFRα, indicating a direct interaction between cadherin-11 and PDGFRα extracellular domains. This study is the first to report an interaction between cadherin-11 and PDGFRα and adds to our growing understanding that cadherin-growth factor receptor interactions help balance the interplay between tissue growth and adhesion.  相似文献   
6.
In an attempt to understand the inter-individual variation that occurs in in vivo mutant frequency at the HPRT locus, we have examined the effect of polymorphisms in genes for metabolic enzymes on the mutation rate. In the same population of human volunteers, the background variant frequency in a number of microsatellite sequences was studied to determine individual variation in the capacity to repair mismatches in these sequences. The HPRT mutant frequency of T-cells isolated from a group of 49 healthy, non-smoking adults varied from 0.25 to 9.64×10−6. The frequency of polymorphisms in CYP1A1, GSTM1 and NAT2 among these individuals was similar to those published, and when subjected to univariate analysis these polymorphisms showed no influence on the HPRT mutant frequency. However, there was a significant interaction between the GSTM1 null genotype and the slow acetylator status in NAT2 (P<0.05) which was associated with higher mutant frequency. Analysis of 30 microsatellite sequences in 20 HPRT proficient clones per individual showed only six alterations in total, giving an overall mutation rate per allele of 0.01%, whilst three alterations were found in five HPRT deficient clones per individual examined for changes in 10 microsatellites, giving an overall mutation rate per allele of 0.3%. Thus, the alterations detected are probably due to background mutations and not to differences in mismatch repair capacity.  相似文献   
7.
We used a direct polymerase chain reaction (PCR) method for quantification of HPRT exons 2+3 deletions and t(14;18) translocations as a measure of illegitimate V(D)J recombination. We determined the baseline frequencies of these two mutations in mononuclear leukocyte DNA from the umbilical cord blood of newborns and from the peripheral blood of adults. In an initial group of 21 newborns, no t(14;18) translocations were detected (<0.049×10−7). The frequency of HPRT exons 2+3 deletions was 0.10×10−7 per mononuclear leukocyte, lower than expected based on the T-cell proportion of this cell fraction (55%–70%) and previous results using the T-cell cloning assay (2–3×10−7 per clonable T-cell). Phytohemagglutinin (PHA), as used in the T-cell cloning assay, was examined for its effect on the frequencies of these mutation events in mononuclear leukocytes from an additional 11 newborns and from 12 adults. There was no significant effect of PHA on t(14;18) translocations which were rare among the newborns (1 detected among 2.7×108 leukocytes analyzed), and which occurred at frequencies from <1×10−7 (undetected) to 1.6×10−4 among the adults. The extremely high frequencies of t(14;18)-bearing cells in three adults were due mainly to in vivo expansion of two to six clones. However, PHA appeared to stimulate a modest (although not significant) increase in the frequency of HPRT exons 2+3 deletions in the leukocytes of the newborns, from 0.07×10−7 to 0.23×10−7. We show that both the direct PCR assay and the T-cell cloning assay detect similar frequencies of HPRT exons 2+3 deletions when calculations are normalized to blood volume, indicating that the apparent discrepancy is probably due to the different population of cells used in the assays. This direct PCR assay may have utility in characterizing the effects of environmental genotoxic agents on this clinically important recombination mechanism.  相似文献   
8.
Gene amplification is widely used for the production of pharmaceuticals and therapeutics in situations where a mammalian system is essential to synthesise a fully active product. Current gene amplification systems require multiple rounds of selection, often with high concentrations of toxic chemicals, to achieve the highest levels of gene amplification. The use of these systems has not been demonstrated in specialised mammalian cells, such as embryonic-stem cells, which can be used to generate transgenic animals. Thus, it has not yet proved possible to produce transgenic animals containing amplified copies of a gene of interest, with the potential to synthesise large amounts of a valuable gene product. We have developed a new amplification system, based around vectors encoding a partially disabled hypoxanthine phosphoribosyltransferase (HPRT) minigene, which can achieve greater than 1000-fold amplification of HPRT and the human growth hormone gene in a single step in Chinese hamster-lung cells. The amplification system also works in mouse embryonic-stem cells and we have used it to produce mice which express 30-fold higher levels of human protein C in milk than obtained with conventional transgenesis using the same protein C construct. This system should also be applicable to large animal transgenics produced by nuclear transfer from cultured cell lines.  相似文献   
9.
Human cells deficient in rate of excision repair of DNA damage induced by UV-radiation, i.e., xeroderma pigmentosum (XP) cells, are much more sensitive to the mutagenic effect of UV than are cells from normal persons. The lower frequency of mutants in the latter cells has been attributed to the fact that, unlike XP cells, they excise most of the potentially mutagenic lesions before these can be converted into mutations. If semi-conservative DNA synthesis on a template still containing unexcised lesions is responsible for introducing mutations and if replication of the gene of interest, e.g., hypoxanthine (guanine)phosphoribosyltransferase (HPRT) for thioguanine resistance or the elongation factor 2 (EF-2) for diphtheria toxin resistance, occurs at a particular time during S-phase, it should be possible to shorten the time available for such repair by synchronizing cells and irradiating them just as the gene is to be replicated. The predicted result would be a much higher frequency of mutants at one part in the S-phase than at other times. To test this, cells were synchronized using the alpha-polymerase inhibitor aphidicolin, which blocks cells at the G1/S border. Autoradiography, cytofluorimetry, and incorporation of tritiated thymidine studies showed that DNA synthesis started immediately after release from aphidicolin and was completed in 8-10 h. Cells irradiated with 6 J/m2 at various times post-release were assayed for survival and mutations. The frequency of thioguanine- or diphtheria toxin-resistant cells in the population was highest in cells irradiated during the first fifth of the S-phase, i.e., 0-1.5 h post-release. It was significantly lower in cells irradiated at later times. In contrast, UV-induced cytotoxicity showed no significant time dependence during S-phase. These data suggest that the HPRT and EF-2 genes are replicated early in S-phase.  相似文献   
10.
Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway or stem from the phosphorolytic cleavage of the N-glycosidic bond of ribonucleosides. The two major pentose phosphates, ribose-5-phosphate and ribose-1-phosphate, can be readily interconverted by phosphopentomutase. Ribose-5-phosphate is also the direct precursor of 5-phosphoribosyl-1-pyrophosphate, which is used for both de novo and salvage synthesis of nucleotides. On the other hand, the phosphorolysis of deoxyribonucleosides is the major source of deoxyribose phosphates. While the destiny of the nucleobase stemming from nucleoside phosphorolysis has been extensively investigated, the fate of the sugar moiety has been somehow neglected. However, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. Nevertheless, many aspects of pentose phosphate metabolism, and the possible involvement of these compounds in a number of cellular processes still remain obscure. The comprehension of the role played by pentose phosphates may be greatly facilitated by the knowledge of their steady-state intracellular levels and of their changes in response to variations of intra- and extracellular signals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号