首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2006年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Annexin A2 (AnxA2) and S100A10 are known to form a molecular complex. Using fluorescence-based binding assays, we show that both proteins are localised on the cell surface, in a molecular form that allows mutual interaction. We hypothesized that binding between these proteins could facilitate cell–cell interactions. For cells that express surface S100A10 and surface annexin A2, cell–cell interactions can be blocked by competing with the interaction between these proteins. Thus an annexin A2-S100A10 molecular bridge participates in cell–cell interactions, revealing a hitherto unexplored function of this protein interaction.  相似文献   
2.
3.
Bacterial interaction with specific host tissue may contribute to its propensity to cause an infection in a particular site. In this study, we examined whether meningitis-causing Escherichia coli K1 interaction with human brain microvascular endothelial cells, which constitute the blood-brain barrier, differed from its interaction with non-brain endothelial cells derived from skin and umbilical cord. We showed that E. coli K1 association was significantly greater with human brain microvascular endothelial cells than with non-brain endothelial cells. In addition, human brain microvascular endothelial cells maintained their morphology and intercellular junctional resistance in response to E. coli K1. In contrast, non-brain endothelial cells exhibited decreased transendothelial electrical resistance and detachment from the matrix upon exposure to E. coli K1. These different responses of brain and non-brain endothelial cells to E. coli K1 may form the basis of E. coli K1's propensity to cause meningitis.  相似文献   
4.
Vasculogenesis, or recruitment of progenitors able to differentiate into endothelial-like cells, may provide an important contribution to neovessel formation in tumors. However, the factors involved in the vasculogenic process and in particular the role of the epithelial-mesenchymal transition of tumor cells have not yet been investigated. We found a CD14+/KDR+ angiogenic monocyte population in undifferentiated ovarian tumors, significantly increased in the corresponding tumor metastasis. In vitro, monocyte differentiation into CD14+/KDR+ cells was induced by conditioned media from the primary ovarian tumor cells expressing a mesenchymal phenotype. In contrast, the ovarian tumor cell line SKOV3 expressing an epithelial phenotype was unable to stimulate the differentiation of monocytes into CD14+/KDR+ cells. When an epithelial-mesenchymal transition was induced in SKOV3, they acquired this differentiative ability. Moreover, after mesenchymal transition pleiotrophin expression by SKOV3 was increased and conversely its blockade significantly reduced monocyte differentiation. The obtained CD14+/KDR+ cell population showed the expression of endothelial markers, increased the formation of capillary-like structures by endothelial cells and promoted the migration of ovarian tumor cells in vitro. In conclusion, we showed that the epithelial-mesenchymal transition of ovarian tumor cells induced differentiation of monocytes into the pro-angiogenic CD14+/KDR+ population and thus it may provide a tumor microenvironment that favours vasculogenesis and metastatization of the ovarian cancer.  相似文献   
5.
6.
7.
Tight junctions (TJs) regulate the passage of ions and molecules through the paracellular pathway in epithelial and endothelial cells. TJs are highly dynamic structures whose degree of sealing varies according to external stimuli, physiological and pathological conditions. In this review we analyze how the crosstalk of protein kinase C, protein kinase A, myosin light chain kinase, mitogen-activated protein kinases, phosphoinositide 3-kinase and Rho signaling pathways is involved in TJ regulation triggered by diverse stimuli. We also report how the phosphorylation of the main TJ components, claudins, occludin and ZO proteins, impacts epithelial and endothelial cell function.  相似文献   
8.
9.
Genomics efforts of the past decade have resulted in the identification of numerous genes with putative roles in disease processes, including tumor angiogenesis. To functionally validate these genes, cultured endothelial cells are indispensable tools, though these may not completely mimic the phenotype of tissue endothelial cells as the proper microenvironment is lacking. To obtain experimental data representative of normal physiology, the use of primary endothelial cells is preferred. However, these cells are usually limited in passage number, can be difficult to obtain and show great interindividual variety. Furthermore, transfection efficiency is very limited in primary cells, hampering applications in functional genomics and gene function analysis. The use of properly characterized alternative endothelial cell sources is therefore warranted. Here, we compared immortalized endothelial cells - HMEC, RF24 and EVLC2 - with primary HUVEC. We show that RF24, and to a slightly lesser extent HMEC, resembles primary HUVEC most on all facets examined. RF24, in contrast to EVLC2, express the endothelial markers CD31, CD34, CD105, vWF and VE-cadherin, and are capable of migration and tube formation in vitro. Furthermore, the expression levels of angiogenic growth factors and their receptors are comparable to that of primary EC. In addition, whereas primary HUVEC are resistant to transfection using common lipophilic transfection reagents, HMEC and RF24 could be readily transfected. Hence, these cells pose a valuable tool for functional genomics in angiogenesis research.  相似文献   
10.
Abstract

N6-isopentenyladenosine is an anti-proliferative and pro-apoptotic atypical nucleoside for normal and tumor cells. Considering the role of angiogenesis in various diseases, we investigated the cytotoxic effect of N6-isopentenyladenosine on human microvascular endothelial cells, protagonists in angiogenesis. Our results show that N6-isopentenyladenosine induced a significant reduction of cell viability, upregulated p21 and promoted caspase-3 cleavage in a dose dependent manner leading to apoptotic cell death as detected by FACS analysis. To understand structure-function relationship of N6-isopentenyladenosine, we investigated the effect of some N6-isopentenyladenosine analogs. Our results suggest that N6-isopentenyladenosine and some of its derivatives are potentially novel angiostatic agents and might be associated with other anti-angiogenic compounds for a better outcome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号